Одночлены

Определения и примеры

Одночлен — это произведение чисел, переменных и степеней. Например, выражения 5a, 3ab2 и −62aa2b3 являются одночленами.

Приведём ещё примеры одночленов:

примеры одночленов

Одночленом также является любое отдельное число, любая переменная или любая степень. Например, число 9 является одночленом, переменная x является одночленом, степень 52 является одночленом.


Приведение одночлена к стандартному виду

Рассмотрим следующий одночлен:

3a25ab2

Этот одночлен выглядит не очень аккуратно. Чтобы сделать его проще, нужно привести его к так называемому стандартному виду.

Приведение одночлена к стандартному виду заключается в перемножении однотипных сомножителей, входящих в этот одночлен. То есть, числа нужно перемножать с числами, переменные с переменными, степени со степенями. В результате этих действий получается упрощённый одночлен, который тождественно равен предыдущему.

Ещё один нюанс заключается в том, что в одночлене степени можно перемножать только в том случае, если они имеют одинаковые основания.

Итак, приведём одночлен 3a25a3b2 к стандартному виду. В этом одночлене содержатся числа 3 и 5. Перемножим их, получим число 15. Записываем его:

15

Далее в одночлене 3a25a3b2 содержатся степени a2 и a3, которые имеют одинаковое основание a. Из тождественных преобразований со степенями известно, что при перемножении степеней с одинаковыми основаниями, основание оставляют без изменений, а показатели складывают. Тогда перемножение степеней a2 и a3 даст в результате a5. Записываем a5 рядом с числом 15

15a5

Далее в одночлене 3a25a3b2 содержится степень b2. Её не с чем перемножать, поэтому она остаётся без изменений. Записываем её как есть к новому одночлену:

15a5b2

Мы привели одночлен 3a25a3b2 к стандартному виду. В результате получили одночлен 15a5b2

3a25a3b2 = 15a5b2

Числовой сомножитель 15 называют коэффициентом одночлена. Приводя одночлен к стандартному виду, коэффициент нужно записывать в первую очередь, и только потом переменные и степени.

Если коэффициент в одночлене отсутствует, то говорят, что коэффициент равен единице. Так, коэффициентом одночлена abc является 1, поскольку abc это произведение единицы и abc

abc = × abc

А коэффициентом одночлена −abc будет −1, поскольку −abc это произведение минус единицы и abc

−abc = −1 × abc

Степенью одночлена называют сумму показателей всех переменных входящих в этот одночлен.

Например, степенью одночлена 15a5b2 является 7. Это потому что переменная a имеет показатель 5, а переменная b имеет показатель 2. Отсюда 5 + 2 = 7. Показатель числового сомножителя 15 считать не нужно, поскольку нас интересуют только показатели переменных.

Ещё пример. Степенью одночлена 7ab2 является 3. Здесь переменная a имеет показатель 1, а переменная b имеет показатель 2. Отсюда 1 + 2 = 3.

Если одночлен не содержит переменных или степеней, а состоит из числа, то говорят, что степень такого одночлена равна нулю. Например, степень одночлена 11 равна нулю.

Не следует путать степень одночлена и степень числа. Степень числа это произведение из нескольких одинаковых множителей, тогда как степень одночлена это сумма показателей всех переменных входящих в этот одночлен. В одночлене 11 нет переменных, поэтому его степень равна нулю.


Пример 1. Привести одночлен 5xx3ya2 к стандартному виду

Перемножим числа 5 и 3, получим 15. Это будет коэффициент одночлена:

15

Далее в одночлене 5xx3ya2 содержатся переменные x и x. Перемножим их, получим x2.

15x2

Далее в одночлене 5xx3ya2 содержится переменная y, которую не с чем перемножать. Записываем её без изменений:

15x2y

Далее в одночлене 5xx3ya2 содержится степень a2, которую тоже не с чем перемножать. Её также оставляем без изменений:

15x2ya2

Получили одночлен 15x2ya2, который приведён к стандартному виду. Буквенные сомножители принято записывать в алфавитном порядке. Тогда одночлен 15x2ya2 примет вид 15a2x2y.

Поэтому, 5xx3ya2 = 15a2x2y.


Пример 2. Привести одночлен 2m3× 0,4mn к стандартному виду

Перемножим числа, переменные и степени по отдельности.

2m3× 0,4mn = 2 × 0,4 × m3 × m × n × n = 0,8m4n2

Числа, переменные и степени при перемножении разрешается заключать в скобки. Делается это для удобства. Так, в данном примере перемножение чисел 2 и 0,4 можно заключить в скобки. Также в скобки можно заключить перемножение m3 × m и n × n

2m3n × 0,4mn = (2 × 0,4) × (m3 × m) × (n × n) = 0,8m4n2

Но желательно выполнять все элементарные действия в уме. Так, решение можно записать значительно короче:

2m3n × 0,4mn = 0,8m4n2

Но чтобы в уме приводить одночлен к стандартному виду, тема умножения целых чисел и умножения степеней должна быть изучена на хорошем уровне.


Сложение и вычитание одночленов

Одночлены можно складывать и вычитать. Чтобы это было возможно, они должны иметь одинаковую буквенную часть. Коэффициенты могут быть любыми. Сложение и вычитание одночленов это по сути приведение подобных слагаемых, которое мы рассматривали при изучении буквенных выражений.

Чтобы сложить (вычесть) одночлены, нужно сложить (вычесть) их коэффициенты, а буквенную часть оставить без изменений.

Пример 1. Сложить одночлены 6a2b и 2a2b

6a2b + 2a2b

Сложим коэффициенты 6 и 2, а буквенную часть 6a2b оставим без изменений

6a2b + 2a2b = 8a2b


Пример 2. Вычесть из одночлена 5a2b3 одночлен 2a2b3

5a2b3 − 2a2b3

Можно заменить вычитание сложением, и сложить коэффициенты одночленов, оставив буквенную часть без изменения:

5a2b3 − 2a2b3 = 5a2b3 + (−2a2b3) = 3a2b3

Либо сразу из коэффициента первого одночлена вычесть коэффициент второго одночлена, а буквенную часть оставить без изменения:

5a2b3 − 2a2b3 = 3a2b3


Умножение одночленов

Одночлены можно перемножать. Чтобы перемножить одночлены, нужно перемножить их числовые и буквенные части.

Пример 1. Перемножить одночлены 5x и 8y

Перемножим числовые и буквенные части по отдельности. Для удобства перемножаемые сомножители будем заключать в скобки:

5x × 8y = (5 × 8) × (x × y) = 40xy


Пример 2. Перемножить одночлены 5x2y3 и 7x3y2c

Перемножим числовые и буквенные части по отдельности. В процессе умножения будем применять правило перемножения степеней с одинаковыми основаниями. Перемножаемые сомножители будем заключать в скобки:

5x2y3 × 7x3y2c = (5 × 7) × (x2x3) × (y3y2) × c = 35x5y5c


Пример 3. Перемножить одночлены −5a2bc и 2a2b4

−5a2bc × 2a2b4 = (−5 × 2) × (a2a2) × (bb4) × c = −10a4b5c


Пример 4. Перемножить одночлены x2y5 и (−6xy2)

x2y5 × (−6xy2) = −6 × (x2x) × (y5y2) = −6x3y7


Пример 5. Найти значение выражения -3 на 5 axy na 5axy пример

-3 на 5 axy na 5axy решение


Деление одночленов

Одночлен можно разделить на другой одночлен. Для этого нужно коэффициент первого одночлена разделить на коэффициент второго одночлена, а буквенную часть первого одночлена разделить на буквенную часть второго одночлена. При этом используется правило деления степеней.

Например, разделим одночлен 8a2b2 на одночлен 4ab. Запишем это деление в виде дроби:

8a2b2 на 4ab

Первый одночлен 8a2b2 будем называть делимым, а второй 4ab — делителем. А одночлен, который получится в результате, назовём частным.

Разделим коэффициент делимого на коэффициент делителя, получим 8 : 4 = 2. В исходном выражении ставим знак равенства и записываем этот коэффициент частного:

8a2b2 на 4ab шаг 2

Теперь делим буквенную часть. В делимом содержится a2, в делителе — просто a. Делим a2 на a, получаем a, поскольку a2 : a = a2 − 1 = a. Записываем в частном a после 2

8a2b2 на 4ab шаг 3

Далее в делимом содержится b2, в делителе — просто b. Делим b2 на b, получаем b, поскольку bb2 − 1 = b. Записываем в частном b после a

8a2b2 на 4ab шаг 4

Значит, при делении одночлена 8a2b2 на одночлен 4ab получается одночлен 2ab.

Сразу можно выполнить проверку. При умножении частного на делитель должно получаться делимое. В нашем случае, если 2ab умножить на 4ab, должно получиться 8a2b2

2ab × 4ab = (2 × 4) × (aa) × (bb) = 8a2b2

Не всегда можно первый одночлен разделить на второй одночлен. Например, если в делителе окажется переменная, которой нет в делимом, то говорят, что деление невозможно.

К примеру, одночлен 6xy2 нельзя разделить на одночлен 3xyz. В делителе 3xyz содержится переменная z, которая не содержится в делимом 6xy2.

Проще говоря, мы не сможем найти частное, которое при умножении на делитель 3xyz дало бы делимое 6xy2, поскольку такое умножение обязательно будет содержать переменную z, которой нет в 6xy2.

Но если в делимом содержится переменная, которая не содержится в делителе, то деление будет возможным. В этом случае переменная, которая отсутствовала в делителе, будет перенесена в частное без изменений.

Например, при делении одночлена 4x2y2z на 2xy, получается 2xyz. Сначала разделили 4 на 2 получили 2, затем x2 разделили на x, получили x, затем y2 разделили на y, получили y. Затем приступили к делению переменной z на такую же переменную в делителе, но обнаружили, что такой переменной в делителе нет. Поэтому перенесли переменную z в частное без изменений:

4x2y2z na 2xy решение

Для проверки умножим частное 2xyz на делитель 2xy. В результате должен получиться одночлен 4x2y2z

2xyz × 2xy = (2 × 2) × (xx) × (yy) × = 4x2y2z

Но в некоторых дробях, если невозможно выполнить деление, бывает возможным выполнить сокращение. Делается это с целью упростить выражение.

Так, в предыдущем примере нельзя было разделить одночлен 6xy2 на одночлен 3xyzНо можно сократить эту дробь на одночлен 3xy. Напомним, что сокращение дроби это деление числителя и знаменателя на одно и то же число (в нашем случае на одночлен 3xy). В результате сокращения дробь становится проще, но её значение не меняется:

6xy2 na 3xyz шаг 1

В числителе и знаменателе мы пришли к делению одночленов, которое можно выполнить:

6xy2 na 3xyz шаг 2

Процесс деления обычно выполняется в уме, записывая над числителем и знаменателем получившийся результат:

6xy2 na 3xyz шаг 3


Пример 2. Разделить одночлен 12a2b3c3 на одночлен 4a2bc

12a2b3c3 na 4a2bc решение


Пример 3. Разделить одночлен x2y3z на одночлен xy2

x2y3z na xy2 решение


Дополнительно упомянем, что деление одночлена на одночлен также невозможно, если одна из степеней, входящая в делимое, имеет показатель меньший, чем показатель той же степени из делителя.

Например, разделить одночлен 2x на одночлен x2 нельзя, поскольку степень x, входящая в делимое, имеет показатель 1, тогда как степень x2, входящая в делитель, имеет показатель 2. Мы не сможем найти частное, которое при перемножении с делителем x2 даст в результате делимое 2x.

Конечно, мы можем выполнить деление x на x2, воспользовавшись свойством степени с целым показателем:

дмм рис 1

и такое частное при перемножении с делителем x2 будет давать в результате делимое 2x

дмм рис 2

Но нас пока интересуют только те частные, которые являются так называемыми целыми выражениями. Целые выражения это те выражения, которые не являются дробями, в знаменателе которых содержится буквенное выражение. А частное 2 на x целым выражением не является. Это дробное выражение, в знаменателе котором содержится буквенное выражение.


Возведение одночлена в степень

Одночлен можно возвести в степень. Для этого используют правило возведения степени в степень.

Пример 1. Возвести одночлен xy во вторую степень.

Чтобы возвести одночлен xy во вторую степень, нужно возвести во вторую степень каждый сомножитель этого одночлена

(xy)2 = x2y2


Пример 2. Возвести одночлен −5a3b во вторую степень.

(−5a3b)2 = (−5)2 × (a3)2 × b2 = 25a6b2


Пример 3. Возвести одночлен −a2bc3 в пятую степень.

В данном примере коэффициентом одночлена является −1. Этот коэффициент тоже нужно возвести в пятую степень:

(−a2bc3)5 = (−1)5 × (a2)5 × b5 × (c3)5 = −1a10b5c15 = −a10b5c15

Когда коэффициент равен −1, то саму единицу не записывают. Записывают только минус и потом остальные сомножители одночлена. В приведенном примере сначала получился одночлен −1a10b5c15, затем он был заменён на тождественно равный ему одночлен a10b5c15.


Пример 4. Представить одночлен 4x2 в виде одночлена, возведённого в квадрат.

В данном примере нужно найти произведение, которое во второй степени будет равно выражению 4x2. Очевидно, что это произведение 2x. Если это произведение возвести во вторую степень (в квадрат), то получится 4x2

(2x)2 = 22x2 = 4x2

Значит, 4x2 = (2x)2. Выражение (2x)2 это и есть одночлен, возведённый в квадрат.


Пример 5. Представить одночлен 121a6 в виде одночлена, возведённого в квадрат.

Попробуем найти произведение, которое во второй степени будет равно выражению 121a6.

Прежде всего заметим, что число 121 получается, если число 11 возвести в квадрат. То есть, первый сомножитель будущего произведения мы нашли. А степень a6 получается в том случае, если возвести в квадрат степень a3. Значит вторым сомножителем будущего произведения будет a3.

Таким образом, если произведение 11a3 возвести во вторую степень, то получится  121a6

(11a3)2 = 112 × (a3)2 = 121a6

Значит, 121a6 = (11a3)2. Выражение (11a3)2 это и есть одночлен, возведённый в квадрат.


Разложение одночлена на множители

Поскольку одночлен является произведением чисел, переменных и степеней, то он может быть разложен на множители, из которых состоит.

Пример 1. Разложить одночлен 3a3b2 на множители

Данный одночлен можно разложить на множители 3, a, a, a, b, b

3a3b2 = 3aaabb

Либо степень b2 можно не раскладывать на множители b и b

3a3b2 = 3aaab2

Либо степень b2 разложить на множители b и b, а степень a3 оставить без изменений

3a3b2 = 3a3bb

В каком виде представлять одночлен зависит от решаемой задачи. Главное, чтобы разложение было тождественно равно исходному одночлену.


Пример 2. Разложить одночлен 10a2b3c4 на множители.

Разложим коэффициент 10 на множители 2 и 5, степень a2 разложим на множители aa, степень b3 — на множители bbb, степень c4 — на множители cccc

10a2b3c4  = 2 × 5 × aabbbcccc


Задания для самостоятельного решения

Задание 1. Приведите одночлен −2aba к стандартному виду.
Решение:
−2aba = −2a2b
Задание 2. Приведите одночлен 0,5× 2n к стандартному виду.
Решение:
0,5m × 2n = (0,5 × 2)(mn) = 1mn = mn
Задание 3. Приведите одночлен −8ab(−2,5)b2 к стандартному виду.
Решение:
−8ab(−2,5)b2 = −8 × (−2,5) × a × (b × b2) = 20ab3
Задание 4. Приведите одночлен 0,15pq × 4pq2 к стандартному виду.
Решение:
Задание 5. Приведите одночлен −2x× 0,5xy2 к стандартному виду.
Решение:
Задание 6. Приведите одночлен 2m3× 0,4mn к стандартному виду.
Решение:
Задание 7. Приведите одночлен  к стандартному виду.
Решение:
Задание 8. Приведите одночлен  к стандартному виду.
Решение:
Задание 9. Перемножьте одночлены 2x и 2y
Решение:
2x × 2y = 4xy
Задание 10. Перемножьте одночлены 6x, 5x и y
Решение:
6x × 5x × y = 30x2y
Задание 11. Перемножьте одночлены 2x2, 2x3 и y2
Решение:
2x2 × 2x3 × y2 = (2 × 2) × (x2x3) × y2 = 4x5y2
Задание 12. Перемножьте одночлены −8x и 5x3
Решение:
−8x × 5x3 = (−8 × 5)×(xx3) = −40x4
Задание 13. Перемножьте одночлены x2y5 и (−6xy2)
Решение:
x2y5 × (−6xy2) = −6 × (x2x) × (y5y2) = −6x3y7
Задание 14. Выполните умножение:
Решение:
Задание 15. Выполните умножение:
Решение:
Задание 16. Возведите одночлен x2y2z2 в третью степень
Решение:
(x2y2z2)3 = (x2)3 × (y2)3 × (z2)3 = x6y6z6
Задание 17. Возведите одночлен xy2z3 в пятую степень.
Решение:
(xy2z3)5 = x5 × (y2)5 × (z3)5 = x5y10z15
Задание 18. Возведите одночлен 4x во вторую степень.
Решение:
(4x)2 = 42 × x2 = 16x2
Задание 19. Возведите одночлен 2y3 в третью степень.
Решение:
(2y3)3 = 23 × (y3)3 = 8y9
Задание 20. Возведите одночлен −0,6x3y2 в третью степень.
Решение:
(−0,6x3y2)3 = (−0,6)3 × (x3)3 × (y2)3= −0,216x9y6
Задание 21. Возведите одночлен x2yz3 в пятую степень.
Решение:
(−x2yz3)5 = (−x2)5 × y5 × (z3)5= −x10y5z15
Задание 22. Возведите одночлен −x3y2z во вторую степень.
Решение:
(−x3y2z)2 = (−x3)2 × (y2)2 × z2 = x6y4z2
Задание 23. Представьте одночлен −27x6y9 в виде одночлена, возведённого в куб.
Решение:
−27x6y9 = (−3x2y3)3
Задание 24. Представьте одночлен −a3b6 в виде одночлена, возведённого в куб.
Решение:
a3b6 = (−ab2)3
Задание 25. Выполните деление
Решение:
Задание 26. Выполните деление
Решение:
Задание 27. Выполните деление
Решение:
Задание 28. Выполните деление
Решение:
Задание 29. Выполните деление
Решение:
Задание 30. Выполните деление
Решение:

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Периметр, площадь и объём

Данный материал содержит геометрические фигуры с измерениями. Приведённые измерения являются приблизительными и могут не совпадать с измерениями в реальной жизни.

Периметр геометрической фигуры

Периметр геометрической фигуры — это сумма всех её сторон. Чтобы вычислить периметр, нужно измерить каждую сторону и сложить результаты измерений.

Вычислим периметр следующей фигуры:

прямоуголник 9 4

Это прямоугольник. Детальнее мы поговорим об этой фигуре позже. Сейчас просто вычислим периметр этого прямоугольника. Длина его равна 9 см, а ширина 4 см.

У прямоугольника противоположные стороны равны. Это видно на рисунке. Если длина равна 9 см, а ширина равна 4 см, то противоположные стороны будут равны 9 см и 4 см соответственно:

прямоуголник 9 4 с двух сторон

Найдём периметр. Для этого сложим все стороны. Складывать их можно в любом порядке, поскольку от перестановки мест слагаемых сумма не меняется. Периметр часто обозначается заглавной латинской буквой P (англ. perimeters). Тогда получим:

P = 9 см + 4 см + 9 см + 4 см = 26 см.

Поскольку у прямоугольника противоположные стороны равны, нахождение периметра записывают короче — складывают длину и ширину, и умножают её на 2, что будет означать «повторить длину и ширину два раза»

P = 2 × (9 + 4) = 18 + 8 = 26 см.

Квадрат это тот же прямоугольник, но у которого все стороны равны. Например, найдём периметр квадрата со стороной 5 см. Фразу «со стороной 5 см» нужно понимать как «длина каждой стороны квадрата равна 5 см»

квадрат со стороной 5

Чтобы вычислить периметр, сложим все стороны:

P = 5 см + 5 см + 5 см + 5 см = 20 см

Но поскольку все стороны равны, вычисление периметра можно записать в виде произведения. Сторона квадрата равна 5 см, и таких сторон 4. Тогда эту сторону, равную 5 см нужно повторить 4 раза

P = 5 см × 4 = 20 см


Площадь геометрической фигуры

Площадь геометрической фигуры — это число, которое характеризует размер данной фигуры.

Следует уточнить, что речь в данном случае идёт о площади на плоскости. Плоскостью в геометрии называют любую плоскую поверхность, например: лист бумаги, земельный участок, поверхность стола.

Площадь измеряется в квадратных единицах. Под квадратными единицами подразумевают квадраты, стороны которых равны единице. Например, 1 квадратный сантиметр, 1 квадратный метр или 1 квадратный километр.

Измерить площадь какой-нибудь фигуры означает выяснить сколько квадратных единиц содержится в данной фигуре.

Например, площадь следующего прямоугольника равна трём квадратным сантиметрам:

3 кв см прямоугольник

Это потому что в данном прямоугольнике содержится три квадрата, каждый из которых имеет сторону, равную одному сантиметру:

вхождение квадрата в прямоугольник рис

Справа представлен квадрат со стороной 1 см (он в данном случае является квадратной единицей). Если посмотреть сколько раз этот квадрат входит в прямоугольник, представленный слева, то обнаружим, что он входит в него три раза.

Следующий прямоугольник имеет площадь, равную шести квадратным сантиметрам:

вхождение квадрата в прямоугольник рис 3

Это потому что в данном прямоугольнике содержится шесть квадратов, каждый из которых имеет сторону, равную одному сантиметру:

вхождение квадрата в прямоугольник рис 2

Допустим, потребовалось измерить площадь следующей комнаты:

комната

Определимся в каких квадратах будем измерять площадь. В данном случае площадь удобно измерить в квадратных метрах:

1 кв метр

Итак, наша задача состоит в том, чтобы определить сколько таких квадратов со стороной 1 м содержится в исходной комнате. Заполним этим квадратом всю комнату:

площадь комнаты 12

Видим, что квадратный метр содержится в комнате 12 раз. Значит, площадь комнаты составляет 12 квадратных метров.


Площадь прямоугольника

В предыдущем примере мы вычислили площадь комнаты, последовательно проверив сколько раз в ней содержится квадрат, сторона которого равна одному метру. Площадь составила 12 квадратных метров.

Комната представляла собой прямоугольник. Площадь прямоугольника можно вычислить перемножив его длину и ширину.

Чтобы вычислить площадь прямоугольника, нужно перемножить его длину и ширину.

Вернёмся к предыдущему примеру. Допустим, мы измерили длину комнаты рулеткой и оказалось, что длина составила 4 метра:

площадь комнаты 12 измерение длины

Теперь измерим ширину. Пусть она составила 3 метра:

площадь комнаты 12 измерение ширины

Умножим длину (4 м) на ширину (3 м).

4 × 3 = 12

Как и в прошлый раз получаем двенадцать квадратных метров. Это объясняется тем, что измерив длину, мы тем самым узнаём сколько раз можно уложить в эту длину квадрат со стороной, равной одному метру. Уложим четыре квадрата в эту длину:

площадь комнаты 12 измерение длины 2

Затем мы определяем сколько раз можно повторить эту длину с уложенными квадратами. Это мы узнаём, измерив ширину прямоугольника:

площадь комнаты 12 измерение длины и ширины


Площадь квадрата

Квадрат это тот же прямоугольник, но у которого все стороны равны. Например, на следующем рисунке представлен квадрат со стороной 3 см. Фраза «квадрат со стороной 3 см» означает, что все стороны равны 3 см

квадрат со стороной 3 см

Площадь квадрата вычисляется таким же образом, как и площадь прямоугольника — длину умножают на ширину.

Вычислим площадь квадрата со стороной 3 см. Умножим длину 3 см на ширину 3 см

3 × 3 = 9

В данном случае требовалось узнать сколько квадратов со стороной 1 см содержится в исходном квадрате. В исходном квадрате содержится девять квадратов со стороной 1 см. Действительно, так оно и есть. Квадрат со стороной 1 см, входит в исходный квадрат девять раз:

квадрат со стороной 3 см S

Умножив длину на ширину, мы получили выражение 3 × 3, а это есть произведение двух одинаковых множителей, каждый из которых равен 3. Иными словами выражение 3 × 3 представляет собой вторую степень числа 3. А значит процесс вычисления площади квадрата можно записать в виде степени 32.

Поэтому вторую степень числа называют квадратом числа. При вычислении второй степени числа a, человек тем самым находит площадь квадрата со стороной a. Операцию возведения числа во вторую степень по другому называют возведением в квадрат.


Обозначения

Площадь обозначается заглавной латинской буквой S (англ. Square — квадрат). Тогда площадь квадрата со стороной a см будет вычисляться по следующему правилу

S = a2

где a — длина стороны квадрата. Вторая степень указывает на то, что происходит перемножение двух одинаковых сомножителей, а именно длины и ширины. Ранее было сказано, что у квадрата все стороны равны, а значит равны длина и ширина квадрата, выраженные через букву a.

Если задача состоит в том, чтобы определить сколько квадратов стороной 1 см содержится в исходном квадрате, то в качестве единиц измерения площади нужно указывать см2. Это обозначение заменяет словосочетание «квадратный сантиметр».

Например, вычислим площадь квадрат со стороной 2 см.

квадрат со стороной 2 см

Значит, квадрат со стороной 2 см, имеет площадь, равную четырём квадратным сантиметрам:

квадрат со стороной 2 см S

Если задача состоит в том, чтобы определить сколько квадратов со стороной 1 м содержится в исходном квадрате, то в качестве единиц измерения нужно указывать м2. Это обозначение заменяет словосочетание «квадратный метр».

Вычислим площадь квадрата со стороной 3 метра

квадрат со стороной 3 m

Значит, квадрат со стороной 3 м, имеет площадь равную девяти квадратным метрам:

квадрат со стороной 3 m S

Аналогичные обозначения используются при вычислении площади прямоугольника. Но длина и ширина прямоугольника могут быть разными, поэтому они обозначаются через разные буквы, например a и b. Тогда площадь прямоугольника с длиной a и шириной b вычисляется по следующему правилу:

S = a × b

Как и в случае с квадратом, единицами измерения площади прямоугольника могут быть см2, м2, км2. Эти обозначения заменяют словосочетания «квадратный сантиметр», «квадратный метр», «квадратный километр» соответственно.

Например, вычислим площадь прямоугольника, длиной 6 см и шириной 3 см

пр со сторонами 6 см и 3 см

Значит, прямоугольник длиной 6 см и шириной 3 см имеет площадь, равную восемнадцати квадратным сантиметрам:

пр со сторонами 6 см и 3 см S

В качестве единицы измерения допускается использовать словосочетание «квадратных единиц». Например, запись S = 3 кв.ед означает, что площадь квадрата или прямоугольника равна трём квадратам, каждый из которых имеет единичную сторону (1 см, 1 м или 1 км).


Перевод единиц измерения площади

Единицы измерения площади можно переводить из одной единицы измерения в другую. Рассмотрим несколько примеров:

Пример 1. Выразить 1 квадратный метр в квадратных сантиметрах.

1 квадратный метр это квадрат со стороной 1 м. То есть, все четыре стороны имеют длину, равную одному метру.

квадрат со стороной 1 м рисунок 2

Но 1 м = 100 см. Тогда все четыре стороны тоже имеют длину, равную 100 см

квадрат со стороной 1 м рисунок 3

Вычислим новую площадь этого квадрата. Умножим длину 100 см на ширину 100 см или возведём в квадрат число 100

S = 1002 = 10 000 см2

Получается, что на один квадратный метр приходится десять тысяч квадратных сантиметров.

1 м = 10 000 см2

Это позволяет в будущем умножить любое количество квадратных метров на 10 000 и получить площадь, выраженную в квадратных сантиметрах.

Чтобы перевести квадратные метры в квадратные сантиметры, нужно количество квадратных метров умножить на 10 000.

А чтобы перевести квадратные сантиметры в квадратные метры, нужно наоборот количество квадратных сантиметров разделить на 10 000.

Например, переведём 100 000 см2 в квадратные метры. Рассуждать в этом случае можно так: «если 10 000 см2 это один квадратный метр, то сколько раз 100 000 см2 будут содержать по 10 000 см2»

100 000 см2 : 10 000 см2 = 10 м2

Другие единицы измерения можно переводить таким же образом. Например, переведём 2 км2 в квадратные метры.

Один квадратный километр это квадрат со стороной 1 км. То есть, все четыре стороны имеют длину, равную одному километру. Но 1 км = 1000 м. Значит, все четыре стороны квадрата также равны 1000 м. Найдём новую площадь квадрата, выраженную в квадратных метрах. Для этого умножим длину 1000 м на ширину 1000 м или возведём в квадрат число 1000

S = 10002 = 1 000 000 м2

Получается, что на один квадратный километр приходится один миллион квадратных метров:

1 км = 1 000 000 м2

Это позволяет в будущем умножить любое количество квадратных километров на 1 000 000 и получить площадь, выраженную в квадратных метрах.

Чтобы перевести квадратные километры в квадратные метры, нужно количество квадратных километров умножить на 1 000 000.

Итак, вернёмся к нашей задаче. Требовалось перевести 2 км2 в квадратные метры. Умножим 2 км2 на 1 000 000

2 км2 × 1 000 000 = 2 000 000 м2

А чтобы перевести квадратные метры в квадратные километры, нужно наоборот количество квадратных метров разделить на 1 000 000.

Например, переведём 3 500 000 м2 в квадратные километры. Рассуждать в этом случае можно так: «если 1 000 000 м2 это один квадратный километр, то сколько раз 3 500 000 м2 будут содержать по 1 000 000 м2»

3 500 000 м2 : 1 000 000 м2 = 3,5 км2


Пример 2. Выразить 7 м2 в квадратных сантиметрах.

Умножим 7 м2 на 10 000

7 м2 = 7 м2 × 10 000 = 70 000 см2


Пример 3. Выразить 5 м2 13 см2 в квадратных сантиметрах.

5 м2 13 см2 = 5 м2 × 10 000 + 13 см2 = 50 013 см2


Пример 4. Выразить 550 000 см2 в квадратных метрах.

Узнаем сколько раз 550 000 см2 содержит по 10 000 см2. Для этого разделим 550 000 см2 на 10 000 см2

550 000 см2 : 10 000 см2 = 55 м2


Пример 5. Выразить 7 км2 в квадратных метрах.

Умножим 7 км2 на 1 000 000

7 км2 × 1 000 000 = 7 000 000 м2


Пример 6. Выразить 8 500 000 м2 в квадратных километрах.

Узнаем сколько раз 8 500 000 м2 содержит по 1 000 000 м2. Для этого разделим 8 500 000 м2 на 1 000 000 м2

8 500 000 м2 × 1 000 000 м2 = 8,5 км2


Единицы измерения площади земельных участков

Площади небольших земельных участков удобно измерять в квадратных метрах.

Площади более крупных земельных участков измеряются в арах и гектарах.

Ар (сокращённо: a) — это площадь равная ста квадратным метрам (100 м2). В виду частого распространения такой площади (100 м2) она стала использоваться, как отдельная единица измерения.

К примеру, если сказано, что площадь какого-нибудь поля составляет 3 а, то нужно понимать, что это три квадрата площадью 100 м2 каждый, то есть:

3 а = 100 м2 × 3 = 300 м2

В народе ар часто называют соткой, поскольку ар равен квадрату, площадью 100 м2. Примеры:

1 сотка = 100 м2

2 сотки = 200 м2

10 соток = 1000 м2

Гектар (сокращенно: га) — это площадь, равная 10 000 м2. К примеру, если сказано, что площадь какого-нибудь леса составляет 20 гектаров, то нужно понимать, что это двадцать квадратов площадью 10 000 м2 каждый, то есть:

20 га = 10 000 м2 × 20 = 200 000 м2


Прямоугольный параллелепипед и куб

Прямоугольный параллелепипед — это геометрическая фигура, состоящая из граней, ребер и вершин. На рисунке показан прямоугольный параллелепипед:

пр параллелепипед

Желтым цветом показаны грани параллелепипеда, чёрным цветом — рёбра, красным — вершины.

Прямоугольный параллелепипед обладает длиной, шириной и высотой. На рисунке показано где длина, ширина и высота:

пр параллелепипед д ш в

Параллелепипед, у которого длина, ширина и высота равны между собой, называется кубом. На рисунке показан куб:

куб


Объём геометрической фигуры

Объём геометрической фигуры — это число, которое характеризует вместимость данной фигуры.

Объём измеряется в кубических единицах. Под кубическими единицами подразумевают кубы длиной 1, шириной 1 и высотой 1. Например, 1 кубический сантиметр или 1 кубический метр.

Измерить объём какой-нибудь фигуры означает выяснить сколько  кубических единиц вмещается в данную фигуру.

Например, объём следующего прямоугольного параллелепипеда равен двенадцати кубическим сантиметрам:

v пр 12

Это потому что в данный параллелепипед вмещается двенадцать кубов длиной 1 см, шириной 1 см и высотой 1 см:

v пр обоснование

Объём обозначается заглавной латинской буквой V. Одна из единиц измерения объема это кубический сантиметр (см3). Тогда объём V рассмотренного нами параллелепипеда равен 12 см3

V = 12 см3

Объём любого параллелепипеда вычисляют следующим образом: перемножают его длину, ширину и высоту .

Объём прямоугольного параллелепипеда равен произведению его длины, ширины и высоты.

V = abc

где, a — длина, b — ширина, c — высота

Так, в предыдущем примере мы визуально определили, что объём параллелепипеда равен 12 см3. Но можно измерить длину, ширину и высоту данного параллелепипеда и перемножить результаты измерений. Мы получим тот же результат

v пр 12 измерения

Объём куба вычисляется таким же образом, как и объём прямоугольного параллелепипеда — перемножают длину, ширину и высоту.

Например, вычислим объём куба, длина которого 3 см. У куба длина, ширина и высота равны между собой. Если длина равна 3 см, то равны этим же трём сантиметрам ширина и высота куба:

v куба стороной 3 см

Перемножаем длину, ширину, высоту и получаем объём, равный двадцати семи кубическим сантиметрам:

V = 3 × 3 × 3 = 27 см³

Действительно, в исходный куб вмещается 27 кубиков длиной 1 см

v куба обоснование

При вычислении объёма данного куба мы перемножили длину, ширину и высоту. Получилось произведение 3 × 3 × 3. Это есть произведение трёх сомножителей, каждый из которых равен 3. Иными словами, произведение 3 × 3 × 3 является третьей степенью числа 3 и может быть записано в виде 33.

V = 33 = 27 см3

Поэтому третью степень числа называют кубом числа. При вычислении третьей степени числа a, человек тем самым находит объём куба, длиной a. Операцию возведения числа в третью степень по другому называют возведением в куб.

Таким образом, объём куба вычисляется по следующему правилу:

V = a3

Где a — длина куба.


Кубический дециметр. Кубический метр

Не все объекты нашего мира удобно измерять в кубических сантиметрах. Например, объём комнаты или дома удобнее измерять в кубических метрах (м3). А объём бака, аквариума или холодильника удобнее измерять в кубических дециметрах (дм3).

Другое название одного кубического дециметра – один литр.

1 дм3 = 1 литр


Перевод единиц измерения объёма

Единицы измерения объёма можно переводить из одной единицы измерения в другую. Рассмотрим несколько примеров:

Пример 1. Выразить 1 кубический метр в кубических сантиметрах.

Один кубический метр это куб со стороной 1 м. Длина, ширина и высота этого куба равны одному метру.

куб со стороной 1 м

Но 1 м = 100 см. Значит, длина, ширина и высота тоже равны 100 см

куб со стороной 1 м рисунок 2

Вычислим новый объём куба, выраженный в кубических сантиметрах. Для этого перемножим его длину, ширину и высоту. Либо возведём число 100 в куб:

V = 1003 = 1 000 000 см3

Получается, что на один кубический метр приходится один миллион кубических сантиметров:

1 м = 1 000 000 см3

Это позволяет в будущем умножить любое количество кубических метров на 1 000 000 и получить объём, выраженный в кубических сантиметрах.

Чтобы перевести кубические метры в кубические сантиметры, нужно количество кубических метров умножить на 1 000 000.

А чтобы перевести кубические сантиметры в кубические метры, нужно наоборот количество кубических сантиметров разделить на 1 000 000.

Например, переведём 300 000 000 см3 в кубические метры. Рассуждать в этом случае можно так: «если 1 000 000 см3 это один кубический метр, то сколько раз 300 000 000 см3 будут содержать по 1 000 000 см3»

300 000 000 см3 : 1 000 000 см3 = 300 м3


Пример 2. Выразить 3 м3 в кубических сантиметрах.

Умножим 3 м3 на 1 000 000

3 м3 × 1 000 000 = 3 000 000 см3


Пример 3. Выразить 60 000 000 см3 в кубических метрах.

Узнаем сколько раз 60 000 000 см3 содержит по 1 000 000 см3. Для этого разделим 60 000 000 см3 на 1 000 000 см3

60 000 000 см3 : 1 000 000 см3 = 60 м3


Вместимость бака, банки или канистры измеряют в литрах. Литр это тоже единица измерения объема. Один литр равен одному кубическому дециметру.

1 литр = 1 дм3

Например, если вместимость банки составляет 1 литр, это значит что объём этой банки составляет 1 дм3. При решении некоторых задач может быть полезным умение переводить литры в кубические дециметры и наоборот. Рассмотрим несколько примеров.

Пример 1. Перевести 5 литров в кубические дециметры.

Чтобы перевести 5 литров в кубические дециметры, достаточно умножить 5 на 1

5 л × 1 = 5 дм3


Пример 2. Перевести 6000 литров в кубические метры.

Шесть тысяч литров это шесть тысяч кубических дециметров:

6000 л × 1 = 6000 дм3

Теперь переведём эти 6000 дм3 в кубические метры.

Длина, ширина и высота одного кубического метра равны 10 дм

куб со стороной 1 м рисунок 3

Если вычислить объём этого куба в дециметрах, то получим 1000 дм3

V = 103= 1000 дм3

Получается, что одна тысяча кубических дециметров соответствует одному кубическому метру. А чтобы определить сколько кубических метров соответствуют шести тысячамл кубических дециметров, нужно узнать сколько раз 6 000 дм3 содержит по 1 000 дм3

6 000 дм3 : 1 000 дм3 = 6 м3

Значит, 6000 л = 6 м3.


Таблица квадратов

В жизни часто приходиться находить площади различных квадратов. Для этого каждый раз требуется возводить исходное число во вторую степень.

Квадраты первых 99 натуральных чисел уже вычислены и занесены в специальную таблицу, называемую таблицей квадратов.

таблица квадратов рисунок 1

Первая строка данной таблицы (цифры от 0 до 9) это единицы исходного числа, а первый столбец (цифры от 1 до 9) это десятки исходного числа.

Например, найдём квадрат числа 24 по данной таблице. Число 24 состоит из цифр 2 и 4. Точнее, число 24 состоит из двух десятков и четырёх единиц.

Итак, выбираем цифру 2 в первом столбце таблицы (столбце десятков), а цифру 4 выбираем в первой строке (строке единиц). Затем, двигаясь вправо от цифры 2 и вниз от цифры 4, найдём точку пересечения. В результате окажемся на позиции, где располагается число 576. Значит, квадрат числа 24 есть число 576

таблица квадратов рисунок 2

242 = 576


Таблица кубов

Как и в ситуации с квадратами, кубы первых 99 натуральных чисел уже вычислены и занесены в таблицу, называемую таблицей кубов.

таблица кубов рисунок 1

Куб числа по таблице определяется таким же образом, как и квадрат числа. Например, найдём куб числа 35. Это число состоит из цифр 3 и 5. Выбираем цифру 3 в первом столбце таблицы (столбце десятков), а цифру 5 выбираем в первой строке (строке единиц). Двигаясь вправо от цифры 3 и вниз от цифры 5, найдём точку пересечения. В результате окажемся на позиции, где располагается число 42875. Значит, куб числа 35 есть число 42875.

таблица кубов рисунок 2

353 = 42875


Задания для самостоятельного решения

Задача 1. Длина прямоугольника составляет 6 см, а ширина 2 см. Найдите периметр.

Решение

P = 2(a + b)

a = 6, b = 2
P = 2(6 + 2) = 12 + 4 = 16 см

Ответ: периметр прямоугольника равен 16 см.

Задача 2. Длина прямоугольника составляет 6 см, а ширина 2 см. Найдите площадь.

Решение

S = ab
a = 6, b = 2
S = 6 × 2 = 12 см2

Ответ: площадь равна 12 см2.

Задача 3. Площадь прямоугольника составляет 12 см2. Длина составляет 6 см. Найдите ширину прямоугольника.

Решение

S = ab
S = 12, a = 6, b = x
12 = 6 × x
x = 2

Ответ: ширина прямоугольника составляет 2 см.

Задача 4. Вычислите площадь квадрата со стороной 8 см

Решение

S = a2
a = 8
S = 82 = 64 см2
Ответ: площадь квадрата со стороной 8 см равна 64 см2

Задача 5. Вычислите объем прямоугольного параллелепипеда, длина которого 6 см, ширина 4 см, высота 3 см.

Решение

V = abc
a = 6, b = 4, c = 3
V = 6 × 4 × 3 = 72 см3.

Ответ: объем прямоугольного параллелепипеда, длина которого 6 см, ширина 4 см, высота 3 см равен 72 см3

Задача 6. Объем прямоугольного параллелепипеда составляет 200 см3. Найдите высоту параллелепипеда, если его длина равна 10 см, а ширина 5 см

Решение

V = abc
V = 200, a = 10, b = 5, c = x
200 = 10 × 5 × x
200 = 50x
x = 4

Ответ: высота прямоугольного параллелепипеда равна 4 см.

Задача 7. Площади земельного участка, засеянные пшеницей и льном, пропорциональны числам 4 и 5. На какой площади засеяна пшеница, если под льном засеяно 15 га

Решение

Число 4 отражает площадь, засеянную пшеницей. А число 5 отражает площадь, засеянную льном.
Сказано что площади, засеянные пшеницей и льном пропорциональны этим числам.

Проще говоря, во сколько раз изменяются числа 4 или 5, во сколько же раз изменится и площадь, которая засеяна пшеницей или льном. Льном засеяно 15 га. То есть, число 5, которое отражает площадь, засеянную льном, изменилось в 3 раза.

Тогда число 4, которое отражает площадь засеянную пшеницей, нужно увеличить в три раза

4 × 3 = 12 га

Ответ: пшеницей засеяно 12 га.

Задача 8. Длина зернохранилища 42 м, ширина составляет длины, а высота – 0,1 длины. Определите сколько тонн зерна вмещает зернохранилище, если 1 м3 его весит 740 кг.

Решение

a — длина
b — ширина
c — высота

a = 42 м
b = м
c = 42 × 0,1 = 4,2 м

Определим объем зернохранилища:

V = abc = 42 × 30 × 4,2 = 5292 м3

Определите сколько тонн зерна вмещает зернохранилище:

5292 × 740 = 3916080 кг

Переведём килограммы в тонны:

Ответ: зернохранилище вмещает 3916,08 тонн зерна.

Задача 9. 12. Бассейн имеет форму прямоугольного параллелепипеда, длина которого равна 5,8 м, а ширина – 3,5 м. Две трубы наполняют его водой в течение 13 ч 32 мин., причём через одну из них вливается 25 л/мин, а через вторую – 0,75 этого количества. Определите высоту (глубину) бассейна.

Решение

Определим сколько литров в минуту вливается через вторую трубу:

25 л/мин × 0,75 = 18,75 л/мин

Определим сколько литров в минуту вливается в бассейн через обе трубы:

25 л/мин + 18,75 л/мин = 43,75 л/мин

Определим сколько литров воды будет залито в бассейн за 13 ч 32 мин

43,75 × 13 ч 32 мин = 43,75 × 812 мин = 35 525 л

1 л = 1 дм3

35 525 л = 35 525 дм3

Переведём кубические дециметры в кубические метры. Это позволит вычислит объем бассейна:

35 525 дм3 : 1000 дм3 = 35,525 м3

Зная объём бассейна можно вычислить высоту бассейна. Подставим в буквенное уравнение V=abc имеющиеся у нас значения. Тогда получим:

V = 35,525
a = 5.8
b = 3.5
c = x

35,525 = 5,8 × 3,5 × x
35,525 = 20,3 × x
x = 1,75 м

с = 1,75

Ответ: высота (глубина) бассейна составляет 1,75 м.


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Степень с целым показателем

Степень с целым показателем — это степень, показателем которой является любое целое число.

В прошлом уроке мы изучили степень с натуральным показателем. Этот вид степени тоже является степенью с целым показателем, поскольку натуральные числа относятся к целым числам.

Также, мы рассмотрели степень, показателем которой является 0. Этот вид степени тоже является степенью с целым показателем, поскольку 0 относится к целым числам.

Рассмотрим ещё один вид степени с целым показателем, а именно показателем которой является целое отрицательное число. Выглядят эти степени так:

2−2, 10−7, a−8

В дальнейшем любую степень с натуральным, нулевым или целым отрицательным показателем, мы будем называть степенью с целым показателем.

Правило вычисления

Рассмотрим следующую последовательность степеней:

20, 21, 22, 23, 24, 25

Первая степень в этой последовательности это степень 20. Предыдущая степень с целым показателем будет уже с отрицательным показателем и выглядеть как 2−1.

2−1, 20, 21, 22, 23, 24, 25

А предыдущая степень с целым показателем, которая располагается до 2−1, будет степень 2−2

2−2, 2−1, 20, 21, 22, 23, 24, 25

Продолжим эту последовательность в сторону степеней с целыми отрицательными показателями:

2−5, 2−4, 2−3, 2−2, 2−1, 20, 21, 22, 23, 24, 25

Теперь попробуем вычислить эти степени. Степени с натуральными показателями и степень, показателем которой является 0, вычисляются легко:

степень с ц.п. рисунок 1

А как вычислить степени с отрицательными показателями? Для начала немного отойдём от темы и затронем несколько закономерностей.

В отрицательную степень число возводится немного иначе. Следует понимать, что если при возведении в положительную степень число увеличивается, то при возведении в отрицательную степень это число наоборот уменьшается.

Если мы возьмём какое-нибудь число n, и начнём последовательно увеличивать его степень, то получим последовательность чисел, в которой каждое число меньше следующего в n раз.

Например, возьмём число 2. Начиная с нуля будем последовательно увеличивать его показатель:

20, 21, 22, 23, 24, 25

Вычислим эти степени:

1, 2, 4, 8, 16, 32

Получили последовательность чисел, в которой каждое число меньше следующего числа в 2 раза. Тогда логично предположить, что число, располагающееся до единицы, будет в два раза меньше единицы. Его можно получить, если 1 разделить на 2

1 на 2 1 2 4 8 16 32

Вернёмся к нашей исходной последовательности, где мы вычисляли степени. Получается, что степень 2−1 мы вычислили. Она равна рациональному числу одна вторая

степень с ц.п. рисунок 2

Предыдущее за числом одна вторая должно быть в два раза меньше, чем одна вторая. Чтобы его получить разделим одна вторая на 2

1 на 2 на 2 решение

Получили одна четвертая. Это значение степени 2−2

степень с ц.п. рисунок 3

Продолжая деление на 2 можно получить значения остальных степеней с целыми отрицательными показателями:

степень с ц.п. рисунок 4

Заметим, что в данной последовательности значения степеней с отрицательными показателями являются обратными числами к значениям степеней с натуральными показателями:

степень с ц.п. рисунок 5

К примеру, значение степени в 22 есть число 4. А значение степени 2−2 есть число одна четвертая. Числа 4 и одна четвертая являются обратными друг другу. А степени 22 и 2−2 отличаются только тем, что у них противоположные показатели.

Можно сделать вывод, что для вычисления степени с отрицательным показателем, нужно записать дробь, в числителе которой единица, а в знаменателе та же самая степень, но с противоположным показателем. Покажем это на примере степени 2−2

2 v - 2 ravno 1 na 2 v 2

Вычислим степень, находящуюся в знаменателе:

2 v - 2 ravno 1 na 2 v 2 шаг 2

Таким образом, чтобы вычислить степень вида an можно воспользоваться следующим правилом:

возведение в степень отр числа формула

Данное правило можно доказать, используя правило деления степеней с одинаковыми основаниями. Допустим, потребовалось вычислить выражение 2: 25. Запишем это деление в виде дроби

2 в 2 на 2 в 3 ratio

Воспользуемся правилом деления степеней с одинаковыми основаниями:

2 в 2 на 2 в 3 ratio 2

Получили степень с отрицательным показателем 2−2. Ранее мы выяснили, что её значение равно одна четвертая. Чтобы убедиться в этом, попробуем вычислить выражение 2 в 2 на 2 в 3 ratio  как обычно, не используя правило деления степеней:

2 в 3 на 2 в 5 решение 1

Получили рациональное число 8 на 32. Сократим его на 8. Тогда получим одна четвертая

2 в 3 на 2 в 5 решение


Пример 2. Найти значение выражения 9−2

Воспользуемся правилом вычисления степени с целым отрицательным показателем:

9 v - 2 решение


Пример 3. Найти значение выражения 3−3

3 в -3 решение

Следует упомянуть, что правило а в -1 формула 130px работает только тогда, когда a ≠ 0.

Действительно, если a будет равным нулю, то в знаменателе получим 0, а на нуль делить нельзя.


Пример 4. Найти значение выражения 1 na 2 v -2 пример

1 na 2 v -2


Пример 5. Найти значение выражения -2 на 3 в -3

-2 на 3 в -3 решение

При возведении обыкновенных дробей в отрицательную степень, можно пользоваться формулой a na b v n formula. Решим предыдущие два примера с помощью этой формулы:

a na b v n formula пример

Желательно уметь возводить обыкновенную дробь в отрицательную степень как с помощью формулы, так и без неё.


Тождественные преобразования

Все тождественные преобразования, которые мы рассматривали при изучении степени с натуральным показателем, сохраняются и для степеней с целыми отрицательными показателями.

Например, чтобы представить выражение 2−1 × 2−3 в виде степени, можно воспользоваться основным свойством степени:

2−1 × 2−3 = 2−1 + (−3) = 2−4


Пример 2. Найти значение выражения 5−15 × 516

Воспользуемся основным свойством степени:

5−15 × 516 = 5−15 + 16 = 5= 5

или:

5-16 на 5 в 16 решение 2

Видим, что первый вариант решения намного проще и удобнее.


Пример 3. Найти значение выражения (10−4)−1

Воспользуемся правилом возведения степени в степень:

(10−4)−1 = 10−4 × (−1) = 104 = 10000


Пример 4. Найти значение выражения 10 в -6 на 5 в -6

Представим число основание 10 в виде произведения 2 × 5. Тогда числитель примет вид (2 × 5)−6

10 в -6 на 5 в -6 шаг 1

В числителе применим правило возведения в степень произведения:

10 в -6 на 5 в -6 шаг 2

Сократим получившуюся дробь на 5−6

10 в -6 на 5 в -6 шаг 3

Вычислим степень 2−6

10 в -6 на 5 в -6 шаг 4


Поднятие степени из знаменателя в числитель и наоборот

Если знаменатель дробного выражения содержит степень, то данную степень можно поднять в числитель, изменив знак показателя этой степени на противоположный. Значение выражения при этом не меняется. Данное преобразование иногда используется при упрощении выражений.

Рассмотрим следующее равенство:

2 в 2 на 2 в 2 равно 1

Данное равенство является верным, поскольку выражение 2 в 2 на 2 в 2 равно 20, а любое число в нулевой есть единица.

Попробуем поднять степень 22 из знаменателя в числитель, изменив знак показателя этой степени на противоположный. При этом, поднятую степень и ту степень, которая располагалась в числителе, соединим знаком умножения:

1 на 2 в 2 рисунок 1

Получили выражение 22 × 2−2. Чтобы его вычислить, воспользуемся основным свойством степени:

22 × 2−2 = 22 + (−2) = 20 = 1

Получился тот же результат, что и раньше. Значит значение выражения не изменилось. Как это работает?

Если в равенстве а в -1 формула 130px поменять местами левую и правую часть, то получим равенство а в -1 формула 130px 2. Это позволяет заменять в выражениях дробь вида 1 на a v n на тождественно равное ей выражение a−n.

Теперь представим выражение 2 в 2 на 2 в 2 в виде произведения 2 в 2 на 1 на 2 в 2. То есть, заменим деление умножением. Напомним, что при замене деления умножением, делимое умножают на число, обратное делителю. А обратное делителю число в данном случае это дробь 

1 на 2 в 2 шаг 2

Теперь воспользуемся правилом а в -1 формула 130px 2. В произведении 2 в 2 на 1 на 2 в 2 заменим дробь  на тождественно равное ей выражение 2−2

1 на 2 в 2 шаг 3

Далее, как и раньше применяем основное свойство степени:

1 на 2 в 2 шаг 4

Получился тот же результат 1.

Таким же образом можно опустить степень из числителя в знаменатель, изменив знак показателя этой степени на противоположный.

Рассмотрим выражение 2 в -2 на 2 в 2. Чтобы найти его значение, воспользуемся правилом деления степеней с одинаковыми основаниями. В результате получим 1 на 16

2 в -2 на 2 в 2 решение

Теперь попробуем решить этот пример, опустив степень 2−2 из числителя в знаменатель, изменив знак показателя этой степени на противоположный. При этом, опущенную степень 2−2 и ту степень, которая располагалась в знаменателе, соединим знаком умножения. А в числителе останется единица:

2 в -2 на 2 в 2 рисунок 1

Дальнейшее вычисление не составит особого труда:

2 в -2 на 2 в 2 решение 2

Как и в прошлом примере выражение 2 в -2 на 2 в 2 представимо в виде произведения 2 в -2 на 2 в 2 шаг 2

2 в -2 на 2 в 2 шаг 1

Этим и объясняется появление единицы в числителе, после того как степень 2−2 была опущена в знаменатель.

Переносимых в знаменатель либо в числитель степеней может быть несколько. Например, знаменатель дроби 1 на 3 в 2 на а в 3 на б на 4 содержит степени 32, a3b4. Перенесём эти степени в числитель, изменив знаки их показателей на противоположные. В результате получим выражение 32a3b4.

Пример 2. Поднять степени из знаменателя дроби 1 на x2y пример в числитель

1 на x2y


Пример 3. Поднять степени из знаменателя дроби 2 на x3 b4 пример в числитель

2 на x3 b4 решение


Пример 4. Поднять степень из знаменателя дроби 3a na b пример в числитель

3a na b решение


Пример 5. Опустить степень из числителя дроби a -5 na x na 2 в знаменатель

a -5 na x na 2 решение


Пример 6. Степень из числителя дроби a-5 na x-2 пример опустить в знаменатель, а степень из знаменателя поднять в числитель

a-5 na x-2 решение

Представлять дробь a-5 na x-2 пример в виде произведения a-5 na x-2 шаг 2 вовсе не обязательно. Если пропустить эту запись, то данный пример можно решить короче:

a-5 na x-2 решение 2


Пример 7. В дроби 3ax na 5bcy пример перенести из знаменателя в числитель только те степени, которые имеют отрицательные показатели:

3ax na 5bcy решение


Пример 8. Представить произведение 3x−5 в виде дроби, не содержащей степени с отрицательным показателем.

Перепишем произведение 3x−5 с помощью знака умножения:

3 × x−5

Сомножитель 3 оставим без изменений, а сомножитель x−5 заменим на тождественно равную ему дробь 1 на x v 5

3 na x-5 решение шаг 1

Теперь согласно правилу умножения целого числа на дробь, умножим множитель 3 на числитель дроби 1 на x v 5. В результате образуется дробь 3 на x-5

3 na x-5 решение


Пример 9. Представить произведение 3(x + y)−4 в виде дроби, не содержащей степени с отрицательным показателем.

Выражение состоит из сомножителей 3 и (x + y)−4. Сомножитель 3 оставим без изменений, а сомножитель (x + y)−4 заменим на тождественно равную ему дробь 3 на x-5 шаг 1

3 на x-5 шаг 2

Теперь умножим множитель 3 на числитель дроби 3 на x-5 шаг 1. В результате образуется дробь 3 на x-5 шаг 3

3 на x-5 решение


Пример 10. Представить дробь 3 на x v 2 в виде произведения.

Чтобы решить этот пример, достаточно поднять степень x2 в числитель, изменив знак показателя этой степени на противоположный:

3 на x v 2 шаг 1

Как и в прошлых примерах дробь 3 на x v 2 можно было представить в виде произведения 3 на x v 2 шаг 2. Затем воспользовавшись правилом а в -1 формула 130px 2, заменить сомножитель 1 на x v 2 на тождественно равный ему сомножитель x−2.

3 на x v 2 решение


Пример 11. Представить дробь x na y v 2 na x v 4 na y na 4 пример в виде произведения.

x na y v 2 na x v 4 na y na 4 решение


Пример 12. Найти значение выражения 5 в 2 на 10 -2 на 2 -3

Поднимем степень 2−3 из знаменателя в числитель, а степень 10−2 из числителя опустим в знаменатель:

5 в 2 на 10 -2 на 2 -3 шаг 1

Вычислим значения степеней, содержащихся в числителе и в знаменателе:

5 в 2 на 10 -2 на 2 -3 шаг 3

Сократим полученную дробь на 25. Тогда останется дробь Восемь четвертых, значение которой равно 2.

5 в 2 на 10 -2 на 2 -3 решение

А если бы мы не подняли степень 2−3 в числитель, и степень 10−2 не опустили в знаменатель, а стали вычислять каждую степень по отдельности, то получили бы не очень компактное решение:

5 в 2 на 10 -2 на 2 -3 решение 2


Возведение числа 10 в целую отрицательную степень

Число 10 в отрицательную степень возводится таким же образом, как и другие числа. Например:

10 в -1 в -2 в -3 примеры

Замечаем, что количество нулей, которые получаются в ответе равны модулю показателя исходной степени. Например, в степени 10−2 модуль показателя равен 2. Это значит, что в ответе будет содержаться два нуля. Так оно и есть:

10 в -2

Чтобы возвести число 10 в отрицательную степень, нужно перед единицей записать количество нулей, равное модулю показателя исходной степени.

При этом после первого нуля, нужно поставить запятую. Примеры:

10 в -4 -5 -6


Представление чисел 0,1, 0,01, 0,001 в виде степени с основанием 10

Чтобы представить числа 0,1, 0,01, 0,001 в виде степени с основанием 10, нужно записать основание 10, и в качестве показателя указать отрицательный показатель, модуль которого равен количеству нулей исходного числа.

Представим число 0,1 в виде степени с основанием 10. Видим, что в числе 0,1 один нуль. Значит, число 0,1 в виде степени с основанием 10 будет представлено как 101. Показатель степени 101 равен −1. Модуль этого показателя равен количеству нулей в числе 0,1

0,1 = 101

Число 0,1 это результат деления 1 на 10, а эта дробь есть значение степени 101.


Пример 2. Представить число 0,01 в виде степени с основанием 10.

В числе 0,01 два нуля. Значит, число 0,01 в виде степени с основанием 10 будет представлено как 10−2. Показатель степени 10−2 равен −2. Модуль этого показателя равен количеству нулей в числе 0,01

0,01 = 10−2

Число 0,01 это результат деления 1 на 100, то есть 1 на 10 в 2, а эта дробь есть значение степени 10−2.


Пример 3. Представить число 0,001 в виде степени с основанием 10.

0,001 = 10−3


Пример 4. Представить число 0,0001 в виде степени с основанием 10.

0,0001 = 10−4


Пример 5. Представить число 0,00001 в виде степени с основанием 10.

0,00001 = 10−5


Стандартный вид числа

Запишем число 2 000 000 в виде произведения числа 2 и 1 000 000

2 × 1 000 000

Сомножитель 1 000 000 можно заменить на степень 106

2 × 106

Такой вид записи называют стандартным видом числа. Стандартный вид числа позволяет записывать в компактном виде как большие, так и маленькие числа.

Например, маленькое число 0,005 можно записать в виде произведения числа 5 и десятичной дроби 0,001.

5 × 0,001

Десятичную дробь 0,001 можно заменить на степень с 10−3

5 × 10−3

Значит, число 0,005 в стандартном виде будет выглядеть как 5 × 10−3

0,005 = 5 × 10−3

По стандартному виду числа можно вычислить изначальное число. Так, при записи числа 2 000 000 в стандартном виде, мы получили произведение 2 × 106. Если вычислить это произведение, то снова получим 2 000 000

2 × 106 = 2 × 1 000 000 = 2 000 000

А при записи числа 0,005 в стандартном виде мы получили произведение 5 × 10−3. Если вычислить это произведение, то получим 0,005

5 на 10 в - 3 решение

То есть, записывая число в стандартном виде нужно записывать его так, чтобы сохранить его изначальное значение.

Стандартным видом числа называют запись вида × 10n, где 1 ≤ < 10 и n — целое число.

Число а это исходное число, которое надо записать в стандартном виде. Оно должно удовлетворять неравенству 1 ≤ < 10. Чаще всего исходное число надо приводить к виду, при котором неравенство 1 ≤ < 10 становится верным.

Например, представим число 12 в стандартном виде. Для начала проверим становится ли верным неравенство 1 ≤ < 10 при подстановке числа 12 вместо а

1 ≤ 12 < 10

Неравенство верным не становится. Чтобы сделать неравенство верным, приведём число 12 к виду, при котором оно удовлетворяло бы данному неравенству. Для этого передвинем в числе 12 запятую влево на одну цифру:

1,2

Число 12 обратилось в число 1,2. Это число будет удовлетворять неравенству 1 ≤ < 10

1 ≤ 1,2 < 10

Теперь наша задача состоит в том, чтобы записать произведение × 10n. С числом а мы разобрались — этим числом у нас будет 1,2. А как подобрать степень с основанием 10?

После переноса запятой на одну цифру влево, число 12 утратило своё изначальное значение. Запятая на одну цифру влево двигается тогда, когда число делят на 10. А чтобы восстановить изначальное значение числа запятую нужно передвинуть обратно в правую сторону на одну цифру, то есть умножить число 1,2 на 10.

Значит, чтобы записать число 12 в стандартном виде, нужно представить его в виде произведения 1,2 × 10¹

12 = 1,2 × 10¹


Пример 2. Записать число 0,5 в стандартном виде.

Число 0,5 не удовлетворяет неравенству 1 ≤ a< 10, поэтому передвинем запятую в этом числе на одну цифру вправо. В результате получим число 5, которое удовлетворяет неравенству 1 ≤ a< 10.

Теперь запишем произведение вида × 10n. Число a в данном случае это 5. А степень с основанием 10 надо выбрать так, чтобы произведение × 10n стало равным числу 0,5. Число 0,5 получится если умножить число 5 на множитель 0,1, который представим в виде степени 10−1. В результате получим следующую запись:

0,5 = 5 × 10−1


Пример 3. Записать число 652 000 в стандартном виде.

Число 652 000 не удовлетворяет неравенству 1 ≤ a< 10, поэтому передвинем запятую в этом числе на пять цифр влево. В результате получим число 6,52000 которое удовлетворяет неравенству 1 ≤ a< 10.

Теперь запишем произведение вида × 10n. Число a в данном случае это 6,52000. А степень с основанием 10 надо выбрать так, чтобы произведение × 10n стало равным числу 652 000. Число 652 000 получится если число 6,52000 умножить на 100 000, а это есть степень 105. В результате получим следующую запись:

652 000 = 6,52000 × 105

Нули в конце десятичной дроби 6,52000 можно отбросить. Тогда получим более компактную запись:

652 000 = 6,52 × 105


Пример 5. Записать число 1 024 000 в стандартном виде.

Число 1 024 000 не удовлетворяет неравенству 1 ≤ a< 10, поэтому передвинем запятую в этом числе на шесть цифр влево. В результате получим число 1,024000 которое удовлетворяет неравенству 1 ≤ a< 10.

Теперь запишем произведение вида × 10n. Число a в данном случае это 1,024000 . А степень с основанием 10 надо выбрать так, чтобы произведение × 10n было равно изначальному числу 1 024 000. Число 1 024 000 получится если число 1,024000 умножить на 1 000 000, а это есть степень 106. В результате получим следующую запись:

1 024 000 = 1,024000 × 106

Нули в конце десятичной дроби 1,024000 можно отбросить:

1 024 000 = 1,024 × 106

Отбрасывать можно только те нули, которые располагаются в конце, и после которых нет других цифр, бóльших нуля. В приведённом примере были отброшены только три нуля, а нуль располагавшийся между запятой и цифрой 2 был сохранен, несмотря на то, что он тоже располагался после запятой.


Пример 6. Записать число 0,000325 в стандартном виде.

Передвинем в данном числе запятую так, чтобы оно удовлетворяло неравенству 1 ≤ a< 10. В результате получим число 3,25

Теперь запишем произведение вида × 10n. Число a в данном случае это 3,25. А степень с основанием 10 надо выбрать так, чтобы произведение × 10n было равно изначальному числу 0,000325. Число 0,000325 получится если число 3,25 умножить на множитель 0,0001 который представим в виде степени 10−4. В результате получим следующую запись:

0,000325 = 3,25 × 10−4


Задания для самостоятельного решения

Задание 1. Вычислите степень 3−2
Решение:
Задание 2. Вычислите степень (−3)−2
Решение:
Задание 3. Вычислите степень −3−2
Решение:
Задание 4. Вычислите степень (−1)−9
Решение:
Задание 5. Вычислите степень
Решение:
Задание 6. Вычислите степень
Решение:
Задание 7. Вычислите степень −(−2)−3
Решение:
Задание 8. Вычислите степень
Решение:
Задание 9. Найдите значение выражения 8 × 4−3
Решение:
Задание 10. Найдите значение выражения 18 × (−9)−1
Решение:
Задание 11. Найдите значение выражения 2−3 − (−2)−4
Решение:
Задание 12. Найдите значение выражения
Решение:
Задание 13. Представить произведение a4b в виде дроби, не содержащей степени с отрицательным показателем.
Решение:
Задание 14. Представить произведение 7xy3 в виде дроби, не содержащей степени с отрицательным показателем.
Решение:
Задание 15. Представить произведение 6(xy)6 в виде дроби, не содержащей степени с отрицательным показателем.
Решение:
Задание 16. Представить произведение x−1y−2 в виде дроби, не содержащей степени с отрицательным показателем.
Решение:
Задание 17. Представить произведение 9a−1(a − b)−2 в виде дроби, не содержащей степени с отрицательным показателем.
Решение:
Задание 18. Представьте дробь  в виде произведения.
Решение:
Задание 19. Представьте дробь  в виде произведения.
Решение:
Задание 20. Представьте дробь  в виде произведения.
Решение:
Задание 21. Представьте дробь  в виде произведения.
Решение:
Задание 22. Представьте дробь  в виде произведения.
Решение:
Задание 23. Представьте дробь  в виде произведения.
Решение:
Задание 24. Представьте дробь  в виде произведения.
Решение:
Задание 25. Представьте дробь  в виде произведения.
Решение:
Задание 26. Представьте дробь  в виде произведения.
Решение:
Задание 27. Представьте число 3 000 000 в стандартном виде.
Решение:
3 000 000 = 3 × 106
Задание 28. Представьте число 0,35 в стандартном виде.
Решение:
0,35 = 3,5 × 10−1
Задание 29. Представьте число 21,56 в стандартном виде.
Решение:
21,56 = 2,156 × 101
Задание 30. Представьте число 0,000008 в стандартном виде.
Решение:
0,000008 = 8 × 10−6
Задание 31. Представьте число 0,000335 в стандартном виде.
Решение:
0,000335 = 3,35 × 10−4
Задание 32. Найдите значение выражения .
Решение:
Задание 33. Найдите значение выражения .
Решение:
Задание 34. Найдите значение выражения .
Решение:
Задание 35. Представьте в виде степени выражение .
Решение:
Задание 36. Представьте в виде степени выражение .
Решение:
Задание 37. Представьте в виде степени выражение .
Решение:
Задание 38. Представьте в виде степени выражение .
Решение:

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Степень с натуральным показателем

Что такое степень?

Степенью называют произведение из нескольких одинаковых множителей. Например:

2 × 2 × 2

Значение данного выражения равно 8

2 × 2 × 2 = 8

Левую часть этого равенства можно сделать короче – сначала записать повторяющийся множитель и указать над ним сколько раз он повторяется. Повторяющийся множитель в данном случае это 2. Повторяется он три раза. Поэтому над двойкой записываем тройку:

23 = 8

Это выражение читается так: «два в третьей степени равно восемь» или «третья степень числа 2 равна 8».

Короткую форму записи перемножения одинаковых множителей используют чаще. Поэтому надо помнить, что если над каким-то числом надписано другое число, то это есть перемножение нескольких одинаковых множителей.

Например, если дано выражение 53, то следует иметь ввиду, что это выражение равносильно записи 5 × 5 × 5.

Число, которое повторяется называют основанием степени. В выражении 5основанием степени является число 5.

А число, которое надписано над числом 5 называют показателем степени. В выражении 5показателем степени является число 3. Показатель степени показывает сколько раз повторяется основание степени. В нашем случае основание 5 повторяется три раза

пять в кубе расшифровка

Саму операцию перемножения одинаковых множителей называют возведением в степень.

Например, если нужно найти произведение из четырёх одинаковых множителей, каждый из которых равен 2, то говорят, что число 2 возводится в четвёртую степень:

2 в 4 равно 16

Видим, что число 2 в четвёртой степени есть число 16.

Отметим, что в данном уроке мы рассматриваем степени с натуральным показателем. Это вид степени, показателем которой является натуральное число. Напомним, что натуральными называют целые числа, которые больше нуля. Например, 1, 2, 3 и так далее.

Вообще, определение степени с натуральным показателем выглядит следующим образом:

Степень числа a с натуральным показателем n — это выражение вида an, которое равно произведению n множителей, каждый из которых равен a

произведение n множителей

Примеры:

произведение n множителей 2

Следует быть внимательным при возведении числа в степень. Часто по невнимательности человек умножает основание степени на показатель.

Например, число 5 во второй степени есть произведение двух множителей каждый из которых равен 5. Это произведение равно 25

5 в 2 равно 25

Теперь представим, что мы по невнимательности умножили основание 5 на показатель 2

5 в 2 не равно 10

Получилась ошибка, поскольку число 5 во второй степени не равно 10.

Дополнительно следует упомянуть, что степень числа с показателем 1, есть само это число:

a в степени единица есть a

Например, число 5 в первой степени есть само число 5

пять в первой степени есть пять

Соответственно, если у числа отсутствует показатель, то надо считать, что показатель равен единице.

Например, числа 1, 2, 3 даны без показателя, поэтому их показатели будут равны единице. Каждое из этих чисел можно записать с показателем 1

числа 1 2 3 с показателями 1

А если возвести 0 в какую-нибудь степень, то получится 0. Действительно, сколько бы раз ничего не умножалось на само себя получится ничего. Примеры:

0 в 1 0 в 2 0 в 3

А выражение 0 не имеет смысла. Но в некоторых разделах математики, в частности анализе и теории множеств, выражение 00 может иметь смысл.

Для тренировки решим несколько примеров на возведение чисел в степени.

Пример 1. Возвести число 3 во вторую степень.

Число 3 во второй степени это произведение двух множителей, каждый из которых равен 3

32 = 3 × 3 = 9


Пример 2. Возвести число 2 в четвертую степень.

Число 2 в четвертой степени это произведение четырёх множителей, каждый из которых равен 2

24 =2 × 2 × 2 × 2 = 16


Пример 3. Возвести число 2 в третью степень.

Число 2 в третьей степени это произведение трёх множителей, каждый из которых равен 2

23 =2 × 2 × 2 = 8


Возведение в степень числа 10

Чтобы возвести в степень число 10, достаточно дописать после единицы количество нулей, равное показателю степени.

Например, возведем число 10 во вторую степень. Сначала запишем само число 10 и в качестве показателя укажем число 2

102

Теперь ставим знак равенства, записываем единицу и после этой единицы записываем два нуля, поскольку количество нулей должно быть равно показателю степени

102 = 100

Значит, число 10 во второй степени это число 100. Связано это с тем, что число 10 во второй степени это произведение двух множителей, каждый из которых равен 10

102 = 10 × 10 = 100


Пример 2. Возведём число 10 в третью степень.

В данном случае после единицы будут стоять три нуля:

103 = 1000


Пример 3. Возведем число 10 в четвёртую степень.

В данном случае после единицы будут стоять четыре нуля:

104 = 10000


Пример 4. Возведем число 10 в первую степень.

В данном случае после единицы будет стоять один нуль:

101 = 10


Представление чисел 10, 100, 1000 в виде степени с основанием 10

Чтобы представить числа 10, 100, 1000 и 10000 в виде степени с основанием 10, нужно записать основание 10, и в качестве показателя указать число, равное количеству нулей исходного числа.

Представим число 10 в виде степени с основанием 10. Видим, что в нём один нуль. Значит, число 10 в виде степени с основанием 10 будет представлено как 101

10 = 101


Пример 2. Представим число 100 в виде степени основанием 10. Видим, что число 100 содержит два нуля. Значит, число 100 в виде степени с основанием 10 будет представлено как 102

100 = 102


Пример 3. Представим число 1 000 в виде степени с основанием 10.

1 000 = 103


Пример 4. Представим число 10 000 в виде степени с основанием 10.

10 000 = 104


Возведение в степень отрицательного числа

При возведении в степень отрицательного числа, его обязательно нужно заключить в скобки.

Например, возведём отрицательное число −2 во вторую степень. Число −2 во второй степени это произведение двух множителей, каждый из которых равен (−2)

(−2)2 = (−2) × (−2) = 4

Если бы мы не заключили в скобки число −2, то получилось бы, что мы вычисляем выражение −22, которое не равно 4. Выражение −2² будет равно −4. Чтобы понять почему, коснёмся некоторых моментов.

Когда мы ставим перед положительным числом минус, мы тем самым выполняем операцию взятия противоположного значения.

Допустим, дано число 2, и нужно найти его противоположное число. Мы знаем, что противоположное числу 2 это число −2. Иными словами, чтобы найти противоположное число для 2, достаточно поставить минус перед этим числом. Вставка минуса перед числом уже считается в математике полноценной операцией. Эту операцию, как было указано выше, называют операцией взятия противоположного значения.

В случае с выражением −22 происходит две операции: операция взятия противоположного значения и возведение в степень. Возведение в степень является более приоритетной операцией, чем взятие противоположного значения.

Поэтому выражение −22 вычисляется в два этапа. Сначала выполняется операция возведения в степень. В данном случае во вторую степень было возведено положительное число 2

Затем выполнилось взятие противоположного значения. Это противоположное значение было найдено для значения 4. А противоположное значение для 4 это −4

−2 = −4

Скобки же имеют самый высокий приоритет выполнения. Поэтому в случае вычисления выражения (−2)2 сначала выполняется взятие противоположного значения, а затем во вторую степень возводится отрицательное число −2. В результате получается положительный ответ 4, поскольку произведение отрицательных чисел есть положительное число.

Пример 2. Возвести число −2 в третью степень.

Число −2 в третьей степени это произведение трёх множителей, каждый из которых равен (−2)

(−2)3 = (−2) × (−2) × (−2) = −8


Пример 3. Возвести число −2 в четвёртую степень.

Число −2 в четвёртой степени это произведение четырёх множителей, каждый из которых равен (−2)

(−2)4 = (−2) × (−2) × (−2) × (−2) = 16

Легко заметить, что при возведении в степень отрицательного числа может получиться либо положительный ответ либо отрицательный. Знак ответа зависит от показателя исходной степени.

Если показатель степени чётный, то ответ будет положительным. Если показатель степени нечётный, ответ будет отрицательным. Покажем это на примере числа −3

-3 в разных степенях

В первом и в третьем случае показатель был нечётным числом, поэтому ответ стал отрицательным.

Во втором и в четвёртом случае показатель был чётным числом, поэтому ответ стал положительным.


Пример 7. Возвести число −5 в третью степень.

Число −5 в третьей степени это произведение трёх множителей каждый из которых равен −5. Показатель 3 является нечётным числом, поэтому мы заранее можем сказать, что ответ будет отрицательным:

(−5)3 = (−5) × (−5) × (−5) = −125


Пример 8. Возвести число −4 в четвёртую степень.

Число −4 в четвёртой степени это произведение четырёх множителей, каждый из которых равен −4. При этом показатель 4 является чётным, поэтому мы заранее можем сказать, что ответ будет положительным:

(−4)4 = (−4) × (−4) × (−4) × (−4) = 256


Нахождение значений выражений

При нахождении значений выражений, не содержащих скобки, возведение в степень будет выполняться в первую очередь, далее умножение и деление в порядке их следования, а затем сложение и вычитание в порядке их следования.

Пример 1. Найти значение выражения 2 + 52

Сначала выполняется возведение в степень. В данном случае во вторую степень возводится число 5 — получается 25. Затем этот результат складывается с числом 2

2 + 52 = 2 + 25 = 27


Пример 10. Найти значение выражения −62 × (−12)

Сначала выполняется возведение в степень. Заметим, что число −6 не взято в скобки, поэтому во вторую степень будет возведено число 6, затем перед результатом будет поставлен минус:

−62 × (−12) = −36 × (−12)

Завершаем пример, умножив −36 на (−12)

−62 × (−12) = −36 × (−12) = 432


Пример 11. Найти значение выражения −3 × 22

Сначала выполняется возведение в степень. Затем полученный результат перемножается с числом −3

−3 × 22 = −3 × 4 = −12

Если выражение содержит скобки, то сначала нужно выполнить действия в этих скобках, далее возведение в степень, затем умножение и деление, а затем сложение и вычитание.


Пример 12. Найти значение выражения (32 + 1 × 3) − 15 + 5

Сначала выполняем действия в скобках. Внутри скобок применяем ранее изученные правила, а именно сначала возводим во вторую степень число 3, затем выполняем умножение 1 × 3, затем складываем результаты возведения в степень числа 3 и умножения 1 × 3. Далее выполняется вычитание и сложение в порядке их следования. Расставим такой порядок выполнения действия над исходным выражением:

3 в 2 на 1 на 3 - 15 на 5 шаг 1

(32 + 1 × 3) − 15 + 5 = 12 − 15 + 5 = 2


Пример 13. Найти значение выражения 2 × 53 + 5 × 23

Сначала возведем числа в степени, затем выполним умножение и сложим полученные результаты:

2 × 53 + 5 × 23 = 2 × 125 + 5 × 8 = 250 + 40 = 290


Тождественные преобразования степеней

Над степенями можно выполнять различные тождественные преобразования, тем самым упрощая их.

Допустим, потребовалось вычислить выражение (23)2. В данном примере два в третьей степени возводится во вторую степень. Иными словами, степень возводится в другую степень.

(23)2 это произведение двух степеней, каждая из которых равна 23

2 в 3 на 2 в 3

При этом каждая из этих степеней является произведением трёх множителей, каждый из которых равен 2

2 в 3 в 2 шаг 1

Получили произведение 2 × 2 × 2 × 2 × 2 × 2, которое равно 64. Значит значение выражения (23)2 или равно 64

2 в 3 в 2 шаг 3

Этот пример можно значительно упростить. Для этого показатели выражения (23)2 можно перемножить и записать это произведение над основанием 2

2 в 3 в 2 шаг 2

Получили 26. Два в шестой степени это произведение шести множителей, каждый из которых равен 2. Это произведение равно 64

2 в 3 в 2 шаг 4

Данное свойство работает по причине того, что 23 это произведение 2 × 2 × 2, которое в свою очередь повторяется два раза. Тогда получается, что основание 2 повторяется шесть раз. Отсюда можно записать, что 2 × 2 × 2 × 2 × 2 × 2 это 26

Вообще, для любого основания a с показателями m и n, выполняется следующее равенство:

(an)m = an × m

Это тождественное преобразование называют возведением степени в степень. Это преобразование можно прочитать так: «При возведении степени в степень основание оставляют без изменений, а показатели перемножают».

После перемножения показателей, получится другая степень, значение которой можно найти.

Пример 2. Найти значение выражения (32)2

В данном примере основанием является 3, а числа 2 и 2 являются показателями. Воспользуемся правилом возведения степени в степень. Основание оставим без изменений, а показатели перемножим:

Получили 34. А число 3 в четвёртой степени есть 81

3 в 2 в 2 шаг 2

Рассмотрим остальные преобразования.

Умножение степеней

Чтобы перемножить степени, нужно по отдельности вычислить каждую степень, и полученные результаты перемножить.

Например, умножим 22 на 33.

22 это число 4, а 33 это число 27. Перемножаем числа 4 и 27, получаем 108

22 × 33 = 4 × 27 = 108

В этом примере основания степеней были разными. В случае, если основания будут одинаковыми, то можно записать одно основание, а в качестве показателя записать сумму показателей исходных степеней.

Например, умножим 22 на 23

В данном примере основания у степеней одинаковые. В этом случае можно записать одно основание 2 и в качестве показателя записать сумму показателей степеней 22 и 23. Иными словами, основание оставить без изменений, а показатели исходных степеней сложить. Выглядеть это будет так:

2 в 2 на 2 в 3 шаг 1

Получили 25. Число 2 в пятой степени есть 32

2 в 2 на 2 в 3 шаг 2

Данное свойство работает по причине того, что 22 это произведение 2 × 2, а 23 это произведение 2 × 2 × 2. Тогда получается произведение из пяти одинаковых множителей, каждый из которых равен 2. Это произведение представимо в виде 25

2 в 2 на 2 в 3 шаг 3

Вообще, для любого a и показателей m и n выполняется следующее равенство:

a v m na a v n

Это тождественное преобразование носит название основного свойства степени. Его можно прочитать так: «При перемножении степеней с одинаковыми основаниями, основание оставляют без изменений, а показатели складывают».

Отметим, что данное преобразование можно применять при любом количестве степеней. Главное, чтобы основание было одинаковым.

Например, найдем значение выражения 21 × 22 × 23. Основание 2 оставим без изменений, а показатели сложим:

2 в 1 на 2 в 2 на 2 в 3

В некоторых задачах достаточным бывает выполнить соответствующее преобразование, не вычисляя итоговую степень. Это конечно же очень удобно, поскольку вычислять большие степени не так-то просто.

Пример 1. Представить в виде степени выражение 58 × 25

В данной задаче нужно сделать так, чтобы вместо выражения 58 × 25 получилась одна степень.

Число 25 можно представить в виде 52. Тогда получим следующее выражение:

5 в 8 на 25 шаг 3

В этом выражении можно применить основное свойство степени — основание 5 оставить без изменений, а показатели 8 и 2 сложить:

5 в 8 на 25 шаг 4

Задачу можно считать решённой, поскольку мы представили выражение 58 × 25 в виде одной степени, а именно в виде степени 510.

Запишем решение покороче:

5 в 8 на 25 шаг 5


Пример 2. Представить в виде степени выражение 29 × 32

Число 32 можно представить в виде 25. Тогда получим выражение 29 × 25. Далее можно применить основание свойство степени — основание 2 оставить без изменений, а показатели 9 и 5 сложить. В результате получится следующее решение:

2 в 9 на 32 решение


Пример 3. Вычислите произведение 3 × 3, используя основное свойство степени.

Все хорошо знают, что три умножить на три равно девять, но задача требует в ходе решения воспользоваться основным свойством степени. Как это сделать?

Вспоминаем, что если число дано без показателя, то показатель нужно считать равным единице. Стало быть сомножители 3 и 3 можно записать в виде 31 и 31

31 × 31

Теперь воспользуемся основным свойством степени. Основание 3 оставляем без изменений, а показатели 1 и 1 складываем:

31 × 31 = 32

Далее вычисляем значение выражения. Число 3 во второй степени равно числу 9

31 × 31 = 32 = 9


Пример 4. Вычислите произведение 2 × 2 × 32 × 33, используя основное свойство степени.

Произведение 2 × 2 заменим на 21 × 21, затем на 21 + 1, а затем на 22. Произведение 32 × 33 заменим на 32 + 3, а затем на 35

2 2 3 3 на 2 и 3 шаг 2

Далее вычисляем значение каждой степени и находим произведение:

2 2 3 3 на 2 и 3 решение


Пример 5. Выполнить умножение x × x

Это два одинаковых буквенных сомножителя с показателями 1. Для наглядности запишем эти показатели. Далее основание x оставим без изменений, а показатели сложим:

xx решение

Находясь у доски, не следует записывать перемножение степеней с одинаковыми основаниями так подробно, как это сделано здесь. Такие вычисления нужно выполнять в уме. Подробная запись скорее всего будет раздражать учителя и он снизит за это оценку. Здесь же подробная запись дана, чтобы материал был максимально доступным для понимания.

Решение данного примера желательно записать так:

xx решение подробно


Пример 6. Выполнить умножение x2 × x

Показатель второго сомножителя равен единице. Для наглядности запишем его. Далее основание оставим без изменений, а показатели сложим:

x v 2 na x решение


Пример 7. Выполнить умножение y3y2y

Показатель третьего сомножителя равен единице. Для наглядности запишем его. Далее основание оставим без изменений, а показатели сложим:

y v 3 y v 3 y решение


Пример 8. Выполнить умножение aa3a2a5

Показатель первого сомножителя равен единице. Для наглядности запишем его. Далее основание оставим без изменений, а показатели сложим:

aa v 3 a v 2 a v 5 решение


Пример 9. Представить степень 38 в виде произведения степеней с одинаковыми основаниями.

В данной задаче нужно составить произведение степеней, основания которых будут равны 3, и сумма показателей которых будет равна 8. Можно использовать любые показатели. Представим степень 38 в виде произведения степеней 35 и 33

3 v 8 ravno 3 v 5 na 3 v 3

В данном примере мы опять же опирались на основное свойство степени. Ведь выражение 35 × 33 можно записать как 35 + 3, откуда 38.

Конечно можно было представить степень 38 в виде произведения других степеней. Например, в виде 37 × 31, поскольку это произведение тоже равно 38

3 в 7 на 3 в 1 есть 3 в 8

Представление степени в виде произведения степеней с одинаковыми основаниями это по большей части творческая работа. Поэтому не нужно бояться экспериментировать.


Пример 10. Представить степень x12 в виде различных произведений степеней с основаниями x.

Воспользуемся основным свойство степени. Представим x12 в виде произведений с основаниями x, и сумма показателей которых равна 12

x12 в виде разных произведений

Конструкции с суммами показателей были записаны для наглядности. Чаще всего их можно пропустить. Тогда получится компактное решение:

x12 в виде разных произведений 2


Возведение в степень произведения

Чтобы возвести в степень произведение, нужно возвести в указанную степень каждый множитель этого произведения и перемножить полученные результаты.

Например, возведём во вторую степень произведение 2 × 3. Возьмём в скобки данное произведение и в качестве показателя укажем 2

2 на 3 в 2

Теперь возведём во вторую степень каждый множитель произведения 2 × 3 и перемножим полученные результаты:

2 на 3 в 2 решение

Принцип работы данного правила основан на определении степени, которое было дано в самом начале.

Возвести произведение 2 × 3 во вторую степень означает повторить данное произведение два раза. А если повторить его два раза, то можно получить следующее:

2 × 3 × 2 × 3

От перестановки мест сомножителей произведение не меняется. Это позволяет сгруппировать одинаковые множители:

2 × 2 × 3 × 3

Повторяющиеся множители можно заменить на короткие записи — основания с показателями. Произведение 2 × 2 можно заменить на 22, а произведение 3 × 3 можно заменить на 32. Тогда выражение 2 × 2 × 3 × 3 обращается в выражение 22 × 32.

Пусть ab исходное произведение. Чтобы возвести данное произведение в степень n, нужно по отдельности возвести множители a и b в указанную степень n

ab в n формула

Данное свойство справедливо для любого количества множителей. Следующие выражения также справедливы:

abcd v n formula


Пример 2. Найти значение выражения (2 × 3 × 4)2

В данном примере нужно возвести во вторую степень произведение 2 × 3 × 4. Чтобы сделать это, нужно возвести во вторую степень каждый множитель этого произведения и перемножить полученные результаты:

2 na 3 na 4 v 2


Пример 3. Возвести в третью степень произведение a × b × c

Заключим в скобки данное произведение, и в качестве показателя укажем число 3

abc v 3

Далее возводим в третью степень каждый множитель данного произведения:

abc v 3 решение


Пример 4. Возвести в третью степень произведение 3xyz

Заключим в скобки данное произведение, и в качестве показателя укажем 3

(3xyz)3

Возведём в третью степень каждый множитель данного произведения:

(3xyz)3 = 33x3y3z3

Число 3 в третьей степени равно числу 27. Остальное оставим без изменений:

(3xyz)3 = 33x3y3z3 = 27x3y3z3

В некоторых примерах умножение степеней с одинаковыми показателями можно заменять на произведение оснований с одним показателем.

Например, вычислим значение выражения 52 × 32. Возведем каждое число во вторую степень и перемножим полученные результаты:

52 × 32 = 25 × 9 = 225

Но можно не вычислять по отдельности каждую степень. Вместо этого, данное произведение степеней можно заменить на произведение с одним показателем (5 × 3)2. Далее вычислить значение в скобках и возвести полученный результат во вторую степень:

52 × 32 = (5 × 3)2 = (15)2 = 225

В данном случае опять же было использовано правило возведения в степень произведения. Ведь, если (a × b)n = an × bn, то an × bn = (a × b)n. То есть, левая и правая часть равенства поменялись местами.


Возведение степени в степень

Это преобразование мы рассматривали в качестве примера, когда пытались понять суть тождественных преобразований степеней.

При возведении степени в степень основание оставляют без изменений, а показатели перемножают:

(an)m = an × m

К примеру, выражение (23)2 является возведением степени в степень — два в третьей степени возводится во вторую степень. Чтобы найти значение этого выражения, основание можно оставить без изменений, а показатели перемножить:

(23)2 = 23 × 2 = 26

Далее вычислить степень 26, которая равна 64

(23)2 = 23 × 2 = 26 = 64

Данное правило основано на предыдущих правилах: возведении в степень произведения и основного свойства степени.

Вернёмся к выражению (23)2. Выражение в скобках 23 представляет собой произведение из трёх одинаковых множителей, каждый из которых равен 2. Тогда в выражении (23)2 степень, находящуюся внутри скобок можно заменить на произведение 2 × 2 × 2.

(2 × 2 × 2)2

А это есть возведение в степень произведения, которое мы изучили ранее. Напомним, что для возведения в степень произведения, нужно возвести в указанную степень каждый множитель данного произведения и полученные результаты перемножить:

(2 × 2 × 2)2 = 22 × 22 × 22

Теперь имеем дело с основным свойством степени. Основание оставляем без изменений, а показатели складываем:

(2 × 2 × 2)2 = 22 × 22 × 22 = 22 + 2 + 2 = 26

Как и раньше получили 26. Значение этой степени равно 64

(2 × 2 × 2)2 = 22 × 22 × 22 = 22 + 2 + 2 = 26 = 64

В степень также может возводиться произведение, сомножители которого тоже являются степенями.

Например, найдём значение выражения (22 × 32)3. Здесь показатели каждого множителя нужно умножить на общий показатель 3. Далее найти значение каждой степени и вычислить произведение:

(22 × 32)= 22×3  × 32×3 = 2× 36 = 64 × 729 = 46656

Примерно тоже самое происходит при возведении в степени произведения. Мы говорили, что при возведении в степень произведения, в указанную степень возводится каждый множитель этого произведения.

Например, чтобы возвести произведение 2 × 4 в третью степень, нужно записать следующее выражение:

2 на 4 в 3

Но ранее было сказано, что если число дано без показателя, то показатель надо считать равным единице. Получается, что множители произведения 2 × 4 изначально имеют показатели равные 1. Значит в третью степень возводилось выражение 21 × 41. А это есть возведение степени в степень.

Перепишем решение с помощью правила возведения степени в степень. У нас должен получиться тот же результат:

2 в 1 на 4 в в 3 решение


Пример 2. Найти значение выражения (33)2

Основание оставляем без изменений, а показатели перемножаем:

3 в 3 в 2 шаг 2

Получили 36. Число 3 в шестой степени есть число 729

3 в 3 в 2 решение


Пример 3. Выполнить возведение в степень в выражении (xy

Возведём в третью степень каждый множитель произведения:

xy v 3


Пример 4. Выполнить возведение в степень в выражении (abc)⁵

Возведём в пятую степень каждый множитель произведения:

abc v 5


Пример 5. Выполнить возведение в степень в выражении (−2ax)3

Возведём в третью степень каждый множитель произведения:

-2ax v 3 шаг 2

Поскольку в третью степень возводилось отрицательное число −2, оно было взято в скобки.

Далее нужно вычислить то, что вычисляется. В данном случае можно вычислить (−2)3 — получится −8. Буквенная часть останется без изменений:

-2ax v 3 решение


Пример 6. Выполнить возведение в степень в выражении (10xy)2

10xy v 2 решение


Пример 7. Выполнить возведение в степень в выражении (−5x)3

-5x v 3 решение


Пример 8. Выполнить возведение в степень в выражении (−3y)4

-3y v 4 решение


Пример 9. Выполнить возведение в степень в выражении (−2abx)⁴

-2abx v 4 решение


Пример 10. Упростите выражение x5 × (x2)3 

Степень x5 пока оставим без изменений, а в выражении (x2)3 выполним возведение степени в степени:

x5 × (x2)3 = x5 × x2 × 3 = x5 × x6

Теперь выполним умножение x5× x6. Для этого воспользуемся основным свойством степени — основание x оставим без изменений, а показатели сложим:

x5 × (x2)3 = x5 × x2× 3 = x5 × x6 = x5 + 6x11


Пример 9. Найти значение выражения 43 × 22, используя основное свойство степени.

Основное свойство степени можно использовать в случае, если основания  исходных степеней одинаковы. В данном примере основания разные, поэтому для начала исходное выражение нужно немного видоизменить, а именно сделать так, чтобы основания степеней стали одинаковыми.

Посмотрим внимательно на степень 43. Основание у этой степени есть число 4, которое можно представить в виде 22. Тогда исходное выражение примет вид (22)3 × 22. Выполнив возведение степени в степень в выражении (22)3, мы получим 26. Тогда исходное выражение примет вид 26 × 22, вычислить которое можно, используя основное свойство степени.

Запишем решение данного примера:

4 v 3 na 2 v 2


Деление степеней

Чтобы выполнить деление степеней, нужно найти значение каждой степени, затем выполнить деление обыкновенных чисел.

Например, разделим 43 на 22.

Вычислим 43, получим 64. Вычислим 22, получим 4. Теперь разделим 64 на 4, получим 16

64 na 4 деление уголком

Если при делении степеней основания окажутся одинаковыми, то основание можно оставить без изменений, а из показателя степени делимого вычесть показатель степени делителя.

Например, найдем значение выражения 23 : 22

Основание 2 оставим без изменений, а из показателя степени делимого вычтем показатель степени делимого:

2 в 3 на 2 в 2 решение

Значит, значение выражения 23 : 22 равно 2.

Данное свойство основано на умножении степеней с одинаковыми основаниями, или как мы привыкли говорить на основном свойстве степени.

Вернемся к предыдущему примеру 23 : 22. Здесь делимое это 23, а делитель 22.

Разделить одно число на другое означает найти такое число, которое при умножении на делитель даст в результате делимое.

В нашем случае, разделить 23 на 22 означает найти такую степень, которая при умножении на делитель 22 даст в результате 23. А какую степень можно умножить на 22, чтобы получить 23 ? Очевидно, что только степень 21. Из основного свойства степени имеем:

2 в 1 на 2 в 2 умножение

Убедиться, что значение выражения 23 : 22 равно 21 можно непосредственно вычислив само выражение 23 : 22. Для этого сначала найдём значение степени 23, получим 8. Затем найдём значение степени 22, получим 4. Разделим 8 на 4, получим 2 или 21, поскольку 2 = 21.

23 : 22 = 8 : 4 = 2

Таким образом, при делении степеней с одинаковыми основаниями выполняется следующее равенство:

a v m na a v n formula

Может случиться и так, что одинаковыми могут оказаться не только основания, но и показатели. В этом случае в ответе получиться единица.

Например, найдём значение выражения 22 : 22. Вычислим значение каждой степени и выполним деление получившихся чисел:

2 v 2 na 2 v 2

При решении примера 22 : 22 также можно применить правило деления степеней с одинаковыми основаниями. В результате получается число в нулевой степени, поскольку разность показателей степеней 22 и 22 равна нулю:

2 v 2 na 2 v 2 решение 2

В математике принято считать, что любое число в нулевой степени есть единица:

2 v 2 na 2 v 2 решение 3

Почему число 2 в нулевой степени равно единице мы выяснили выше. Если вычислить 22 : 22 обычным методом, не используя правило деления степеней, получиться единица.


Пример 2. Найти значение выражения 412 : 410

Воспользуемся правилом деления степеней. Основание 4 оставим без изменений, а из показателя степени делимого вычтем показатель степени делителя:

412 : 410 = 412 − 10 = 42 = 16


Пример 3. Представить частное x3 : x в виде степени с основанием x

Воспользуемся правилом деления степеней. Основание x оставим без изменений, а из показателя степени делимого вычтем показатель степени делителя. Показатель делителя равен единице. Для наглядности запишем его:

x v 3 na x v 1


Пример 4. Представить частное x3 : x2 в виде степени с основанием x

Воспользуемся правилом деления степеней. Основание x оставим без изменений, а из показателя степени делимого вычтем показатель степени делителя:

x v 3 na x v 2

Деление степеней можно записывать в виде дроби. Так, предыдущий пример можно записать следующим образом:

x v 3 na x v 2 2

Числитель и знаменатель дроби x v 3 na x v 2 3 разрешается записывать в развёрнутом виде, а именно в виде произведений одинаковых множителей. Степень x3 можно записать как x × x × x, а степень x2 как x × x. Тогда конструкцию x3 − 2 можно будет пропустить и воспользоваться сокращением дроби. В числителе и в знаменателе можно будет сократить по два множителя x. В результате останется один множитель x

x v 3 na x v 2 4

Или ещё короче:

x v 3 na x v 2 5

Также, полезно уметь быстро сокращать дроби, состоящие из степеней. Например, дробь x v 3 na x v 2 3 можно сократить на x2. Чтобы сократить дробь x v 3 na x v 2 3 на x2 нужно числитель и знаменатель дроби x v 3 na x v 2 3 разделить на x2

x v 3 na x v 2 6

Деление степеней подробно можно не расписывать. Приведённое сокращение можно выполнить короче:

x v 3 na x v 2 7

Или ещё короче:

x v 3 na x v 2 8


Пример 5. Выполнить деление x12 : x3

Воспользуемся правилом деления степеней. Основание x оставим без изменений, а из показателя степени делимого вычтем показатель степени делителя:

x v 12 na x 3

Запишем решение при помощи сокращения дроби. Деление степеней x12 : x3 запишем в виде x v 12 na x v 3 . Далее сократим данную дробь на x3.

x v 12 na x v 3 2


Пример 6. Найти значение выражения 7 v 9 na 7 v 5 na 7 v 12

В числителе выполним умножение степеней с одинаковыми основаниями:

7 v 9 na 7 v 5 na 7 v 12 шаг 2

Теперь применяем правило деления степеней с одинаковыми основаниями. Основание 7 оставляем без изменений, а из показателя степени делимого вычтем показатель степени делителя:

7 v 9 na 7 v 5 na 7 v 12 шаг 3

Завершаем пример, вычислив степень 72

7 v 9 na 7 v 5 na 7 v 12 решение


Пример 7. Найти значение выражения 2 v na 2 v 3 v 4 na 2 v 13

Выполним в числителе возведение степени в степень. Сделать это нужно с выражением (23)4

2 v na 2 v 3 v 4 na 2 v 13 шаг 2

Теперь выполним в числителе умножение степеней с одинаковыми основаниями:

2 v na 2 v 3 v 4 na 2 v 13 шаг 3

Теперь применяем правило деления степеней с одинаковыми основаниями:

2 v na 2 v 3 v 4 na 2 v 13 решение

Значит, значение выражения 2 v na 2 v 3 v 4 na 2 v 13 равно 16

В некоторых примерах можно сокращать одинаковые множители в ходе решения. Это позволяет упростить выражение и само вычисление в целом.

Например, найдём значение выражения 4 v 3 na 3 v 2 na 2 v 6. Степень 43 запишем в виде возведения степени в степень (22)3. Тогда получим следующее выражение:

4 v 3 na 3 v 2 na 2 v 6 шаг 2

В числителе выполним возведение степени в степень. Сделать это нужно с выражением (22)3

4 v 3 na 3 v 2 na 2 v 6 шаг 3

В числителе и в знаменателе получившегося выражения содержится степень 26, которую можно сократить на 26

4 v 3 na 3 v 2 na 2 v 6 решение

Видим, что в результате осталась единственная степень 32, значение которой равно 9.


Пример 8. Найти значение выражения 28 v 6 na 7 v 5 na 4 v 5 пример

В знаменателе содержится произведение степеней с одинаковыми показателями. Согласно правилу возведения в степень произведения, конструкцию 75 × 45 можно представить в виде степени с одним показателем (7 × 4)5. Далее перемножим выражение в скобках, получим 285. В результате исходное выражение примет следующий вид:

28 v 6 na 28 v 5

Теперь можно применить правило деления степеней:

28 v 6 na 28 v 5 шаг 2

Значит, значение выражения 28 v 6 na 7 v 5 na 4 v 5 пример равно 28. Запишем решение полностью:

28 v 6 na 28 v 5 решение


Возведение в степень обыкновенных дробей

Чтобы возвести в степень обыкновенную дробь, нужно возвести в указанную степень числитель и знаменатель этой дроби.

Например, возведём обыкновенную дробь две третьих во вторую степень. Возьмём в скобки данную дробь и в качестве показателя укажем 2

2 на 3 v 2

Если не брать в скобки всю дробь, то это равносильно возведению в степень только числителя данной дроби. Иными словами, если мы хотим возвести во вторую степень дробь две третьих, мы не должны записывать это как 2 на 3 v 2 2.

Итак, чтобы вычислить значение выражения 2 на 3 v 2, нужно возвести во вторую степень числитель и знаменатель данной дроби:

2 на 3 v 2 шаг 2

Получили дробь в числителе и в знаменателе которой содержатся степени. Вычислим каждую степень по отдельности

2 на 3 v 2 решение

Значит обыкновенная дробь две третьих во второй степени равна дроби .

Приведённое правило работает следующим образом. Дробь две третьих во второй степень это произведение двух дробей, каждая из которых равна две третьих

2 на 3 v 2 объяснение

Мы помним, что для перемножения дробей необходимо перемножить их числители и знаменатели:

2 на 3 v 2 объяснение 2

А поскольку в числителе и в знаменателе происходит перемножение одинаковых множителей, то выражения 2 × 2 и 3 × 3 можно заменить на 22 и 32 соответственно:

2 на 3 v 2 шаг 3

Откуда и получится ответ .

Вообще, для любого a и ≠ 0 выполняется следующее равенство:

a na b v 2 формула

Это тождественное преобразование называют возведением в степень обыкновенной дроби.


Пример 2. Возвести дробь Три пятых в третью степень

Заключим данную дробь в скобки и в качестве показателя укажем число 3. Далее возведём числитель и знаменатель данной дроби в третью степень и вычислим получившуюся дробь:

3 на 5 v 3 решение

Отрицательная дробь возводится в степень таким же образом, но перед вычислениями надо определиться какой знак будет иметь ответ. Если показатель четный, то ответ будет положительным. Если показатель нечетный, то ответ будет отрицательным.

Например, возведём дробь минус одна вторая во вторую степень:

- 1 na 2 v 2

Показатель является чётным числом. Значит ответ будет положительным. Далее применяем правило возведения в степень дроби и вычисляем получившуюся дробь:

- 1 na 2 v 2 решение

Ответ положителен по причине того, что выражение - 1 na 2 v 2 представляет собой произведение двух сомножителей, каждый из которых равен дроби минус одна вторая

- 1 na 2 v 2 объяснение

А произведение отрицательных чисел (в том числе и рациональных) есть положительное число:

- 1 na 2 v 2 объяснение 2

Если возводить дробь минус одна вторая в третью степень, то ответ будет отрицательным, поскольку в данном случае показатель будет нечётным числом. Правило возведения в степень остаётся тем же, но перед выполнением этого возведения, нужно будет поставить минус:

-1 на 2 v 3 решение

Здесь ответ отрицателем по причине того, что выражение -1 на 2 v 3 представляет собой произведение трёх множителей, каждый из которых равен дроби минус одна вторая

-1 на 2 v 3 объяснение

Сначала перемножили минус одна вторая и минус одна вторая, получили одна четвертая, но затем умножив одна четвертая на минус одна вторая мы получим отрицательный ответ Минус одна восьмая

-1 на 2 v 3 объяснение 2


Пример 3. Найти значение выражения 2 в 2 на 4 в 2 - 3 на 16

Выполним возведение в степень обыкновенной дроби:

2 в 2 на 4 в 2 - 3 на 16 шаг 2

Далее вычислим значение получившегося выражения:

2 в 2 на 4 в 2 - 3 на 16 решение


Возведение в степень десятичных дробей

При возведении в степень десятичной дроби её необходимо заключить в скобки. Например, возведём во вторую степень десятичную дробь 1,5

15 в 2

Допускается переводить десятичную дробь в обыкновенную и возводить в степень эту обыкновенную дробь. Решим предыдущий пример, переведя десятичную дробь в обыкновенную:

15 в 2 решение 2


Пример 2. Найти значение степени (−1,5)3

Показатель степени является нечётным числом. Значит ответ будет отрицательным

-15 в 3 решение


Пример 3. Найти значение степени (−2,4)2

Показатель степени является чётным числом. Значит ответ будет положительным:

-24 в 2 решение


Задания для самостоятельного решения

Задание 1. Найдите значение выражения:
Решение:
Задание 2. Найдите значение выражения:
Решение:
Задание 3. Найдите значение выражения:
Решение:
Задание 4. Найдите значение выражения:
Решение:
Задание 5. Найдите значение выражения:
Решение:
Задание 6. Найдите значение выражения:
Решение:
Задание 7. Представьте в виде степени произведение:
Решение:
Задание 8. Представьте в виде степени произведение:
Решение:
Задание 9. Представьте в виде степени произведение:
Решение:
Задание 10. Представьте в виде степени произведение:
Решение:
Задание 11. Представьте в виде степени произведение:
Решение:
Задание 12. Представьте в виде степени произведение:
Решение:
Задание 13. Представьте в виде степени частное:
Решение:
Задание 14. Представьте в виде степени частное:
Решение:
Задание 15. Представьте в виде степени частное:
Решение:
Задание 16. Представьте в виде степени частное:
Решение:
Задание 17. Представьте в виде степени частное:
Решение:
Задание 18. Представьте в виде степени частное и найдите значение получившейся степени при = 3 и = 2
Решение:
Задание 19. Представьте в виде степени частное:
Решение:
Задание 20. Сократите дробь на
Решение:
Задание 21. Представьте в виде степени следующее произведение:
Решение:
Задание 22. Представьте в виде степени следующее произведение:
Решение:
Задание 23. Представьте в виде степени следующее произведение:
Решение:
Задание 24. Представьте в виде степени следующее произведение:
Решение:
Задание 25. Представьте в виде степени следующее произведение:
Решение:
Задание 26. Представьте следующую степень в виде произведения степеней:
Решение:
Задание 27. Представьте следующую степень в виде произведения степеней:
Решение:
Задание 28. Представьте следующую степень в виде произведения степеней:
Решение:
Задание 29. Пользуясь тождественными преобразованиями степеней, найдите значение следующего выражения:
Решение:
Задание 30. Пользуясь тождественными преобразованиями степеней, найдите значение следующего выражения:
Решение:
Задание 31. Пользуясь тождественными преобразованиями степеней, найдите значение следующего выражения:
Решение:
Задание 32. Представьте в виде степени следующее выражение:
Решение:
Задание 33. Представьте в виде степени следующее выражение:
Решение:
Задание 34. Представьте в виде степени следующее выражение:
Решение:
Задание 35. Представьте в виде степени следующее выражение:
Решение:
Задание 36. Представьте в виде степени следующее выражение:
Решение:
Задание 37. Представьте в виде степени следующее выражение:
Решение:
Задание 38. Найдите значение следующего выражения:
Решение:
Задание 39. Найдите значение следующего выражения:
Решение:
Задание 40. Найдите значение следующего выражения:
Решение:
Задание 41. Найдите значение следующего выражения:
Решение:
Задание 42. Найдите значение следующего выражения:
Решение:
Задание 43. Найдите значение следующего выражения:
Решение:
Задание 44. Найдите значение следующего выражения:
Решение:

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Операции над множествами

Пересечение множеств

Рассмотрим два множества: множество друзей Джона и множество друзей Майкла.

Друзья Джона = { Том,
Фред,
Макс,
Джорж }
Друзья Майкла = { Лео,
Том,
Фред,
Эван }

Видим, что Том и Фред одновременно являются друзьями Джона и Майкла.

Говоря на языке множеств, элементы Том и Фред принадлежат как множеству друзей Джона, так и множеству друзей Майкла.

Зададим новое множество с названием «Общие друзья Джона и Майкла» и в качестве элементов добавим в него Тома и Фреда:

Общие друзья Джона и Майкла = { Том, Фред }

В данном случае множество «Общие друзья Джона и Майкла» является пересечением множеств друзей Джона и Майкла.

Пересечением двух (или нескольких) исходных множеств называется множество, которое состоит из элементов, принадлежащих каждому из исходных множеств.

В нашем случае элементы Том и Фред принадлежат каждому из исходных множеств, а именно: множеству друзей Джона и множеству друзей Майкла.

Обозначим множество друзей Джона через букву A, множество друзей Майкла — через букву B, а множество общих друзей Джона и Майкла обозначим через букву C:

A = { Том, Фред, Макс, Джордж }

B = { Лео, Том, Фред, Эван }

C = { Том, Фред }

Тогда пересечением множеств A и B будет множество C и записываться следующим образом:

B = C

Символ  означает пересечение.

Говоря о множестве, обычно подразумевают элементы, принадлежащие этому множеству. Символ пересечения  читается, как союз И. Тогда выражение A ∩ B = C можно прочитать следующим образом:

«Элементы, принадлежащие множеству A И множеству B, есть элементы, принадлежащие множеству C».

Или еще проще:

«Друзья, одновременно принадлежащие Джону И Майклу, есть общие друзья Джона и Майкла».

Теперь представим, что у Джона и Майкла нет общих друзей. Для удобства, как и прежде обозначим множество друзей Джона через букву A, а множество друзей Майкла через букву B

A = { Макс, Джордж }

B = { Лео, Эван }

В этом случае говорят, что исходные множества не имеют общих элементов и пересечением таких множеств является пустое множество. Пустое множество обозначается символом 

A ∩ B = 


Пример 2. Рассмотрим два множества: множество A, состоящее из чисел 1, 2, 3, 5, 7 и множество B, состоящее из чисел 1, 2, 3, 4, 6, 12, 18

A = { 1, 2, 3, 5, 7 }

B = { 1, 2, 3, 4, 6, 12, 18 }

Зададим новое множество C и добавим в него элементы, которые одновременно принадлежат множеству A и множеству B

C = { 1, 2, 3 }

Множество С является пересечением множеств A и B, поскольку элементы множества C одновременно принадлежат множеству A и множеству B


Пример 3. Рассмотрим два множества: множество A, состоящее из чисел 1, 5, 7, 9 и множество B, состоящее из чисел 1, 4, 5, 7

A = { 1, 5, 7, 9 }

B = { 1, 4, 5, 7 }

Зададим новое множество C и добавим в него элементы, которые одновременно принадлежат множеству A и множеству B

C = { 1, 5, 7 }

Множество С является пересечением множеств A и B, поскольку элементы множества C одновременно принадлежат множеству A и множеству B.


Пример 4. Найти пересечение следующих множеств:

A = { 1, 2, 3, 7, 9 }

B = { 1, 3, 5, 7, 9}

С = { 3, 4, 5, 8,  9}

Пересечением множеств A, B и C будет множество, состоящее из элементов, принадлежащих каждому из множеств A, B и C. Этими элементами являются числа 3 и 9.

Зададим новое множество D и добавим в него элементы 3 и 9. Затем с помощью символа пересечения ∩ запишем, что пересечением множеств A, B и C является множество D

D = { 2, 3}

A ∩ B ∩ C = D

Чтобы найти пересечение, вовсе необязательно задавать множества с помощью букв. Если элементов мало, то множество можно задать прямым перечислением элементов.

К примеру, пусть первое множество состоит из элементов 1, 3, 5, а второе из элементов 2, 3, 5. Пересечением в данном случае является множество, состоящее из элементов 3 и 5. Чтобы записать пересечение, можно воспользоваться прямым перечислением:

{ 1, 3, 5 } ∩ { 2, 3, 5 } = { 3, 5 }

Числовые промежутки, которые мы рассмотрели в предыдущих уроках, тоже являются множествами. Элементами таких множеств являются числа, входящие в числовой промежуток.

Например, отрезок [2; 6] можно понимать, как множество всех чисел от 2 до 6. Для наглядности можно перечислить все целые числа, принадлежащие данному отрезку:

2, 3, 4, 5, 6 ∈ [2; 6]

Следует иметь ввиду, что мы перечислили только целые числа. Отрезку [2; 6] также принадлежат и другие числа, не являющиеся целыми, например, десятичные дроби. Десятичные дроби располагаются между целыми числами, но их количество настолько велико, что перечислить их не представляется возможным.

Еще пример. Интервал (2; 6) можно понимать, как множество всех чисел от 2 до 6, кроме чисел 2 и 6. Ранее мы говорили, что интервал это такой числовой промежуток, границы которого не принадлежат ему. Для наглядности можно перечислить все целые числа, принадлежащие интервалу (2; 6):

3, 4, 5 ∈ (2; 6)

Поскольку числовые промежутки являются множествами, то мы можем находить пересечения между различными числовыми промежутками. Рассмотрим несколько примеров.

Пример 5. Даны два числовых промежутка: [2; 6] и [4; 8]. Найти их пересечение.

Оба промежутка обрамлены квадратными скобками, значит их границы принадлежат им.

Для наглядности перечислим все целые числа, принадлежащие промежуткам [2; 6] и [4; 8]:

2, 3, 4, 5, 6 ∈ [2; 6]

4, 5, 6, 7, 8 ∈ [4; 8]

Видно, что числа 4, 5, 6 принадлежат как первому промежутку [2; 6], так и второму [4; 8].

Тогда пересечением числовых промежутков [2; 6] и [4; 8] будет числовой промежуток [4; 6]

[2; 6] ∩ [4; 8] = [4; 6]

Изобразим промежутки [2; 6] и [4; 8] на координатной прямой. На верхней области отметим числовой промежуток [2; 6], на нижней — промежуток [4; 8]

два промежутка на одной кп

Видно, что числа, принадлежащие промежутку [4; 6], принадлежат как промежутку [2; 6], так и промежутку [4; 8]. Можно также заметить, что штрихи, входящие в промежутки [2; 6] и [4; 8] пересекаются в промежутке [4; 6]. В такой ситуации, когда перед глазами есть координатная прямая, понятие пересечения множеств можно понимать в прямом смысле, что очень удобно.


Пример 6. Найти пересечение числовых промежутков [−2; 3] и [4; 7]

Оба промежутка обрамлены квадратными скобками, значит их границы принадлежат им.

Для наглядности перечислим все целые числа, принадлежащие промежуткам [−2; 3] и [4; 7]:

−2, −1, 0, 1, 2, 3 ∈ [−2; 3]

4, 5, 6, 7 ∈ [4; 7]

Видно, что числовые промежутки [−2; 3] и [4; 7] не имеют общих чисел. Поэтому их пересечением будет пустое множество:

[−2; 3] ∩ [4; 7] = Ø

Если изобразить числовые промежутки [−2; 3] и [4; 7] на координатной прямой, то можно увидеть, что они нигде не пересекаются:

-2 3 и 4 7 координатная прямая


Пример 7. Дано множество из одного элемента { 2 }. Найти его пересечение с промежутком (−3; 4)

Множество, состоящее из одного элемента { 2 }, на координатной прямой изображается в виде закрашенного кружка, а числовой промежуток (−3; 4) это интервал, границы которого не принадлежат ему. Значит границы −3 и 4 будут изображаться в виде пустых кружков:

-3 2 4 кп

Пересечением множества { 2 } и числового промежутка (−3; 4) будет множество, состоящее из одного элемента { 2 }, поскольку элемент 2 принадлежит как множеству { 2 }, так и числовому промежутку (−3; 4)

{ 2 } ∩ (−3; 4) = { 2 }

На самом деле мы уже занимались пересечением числовых промежутков, когда решали системы линейных неравенств. Вспомните, как мы решали их. Сначала находили множество решений первого неравенства, затем множество решений второго. Затем находили множество решений, которые удовлетворяют обоим неравенствам.

По сути, множество решений, удовлетворяющих обоим неравенствам, является пересечением множеств решений первого и второго неравенства. Роль этих множеств берут на себя числовые промежутки.

Например, чтобы решить систему неравенств x b i r 6 i x m r 3 , мы должны сначала найти множества решений каждого неравенства, затем найти пересечение этих множеств.

В данном примере решением первого неравенства ≥ 3 является множество всех чисел, которые больше 3 (включая само число 3). Иначе говоря, решением неравенства является числовой промежуток [3; +∞)

Решением второго неравенства ≤ 6 является множество всех чисел, которые меньше 6 (включая само число 6). Иначе говоря, решением неравенства является числовой промежуток (−∞; 6]

А общим решением системы будет пересечение множеств решений первого и второго неравенства, то есть пересечение числовых промежутков [3; +∞) и (−∞; 6]

Если мы изобразим множество решений системы x b i r 6 i x m r 3 на координатной прямой, то увидим, что эти решения принадлежат промежутку [3; 6], который в свою очередь является пересечением промежутков [3; +∞) и (−∞; 6]

[3; +∞) ∩ (−∞; 6] = [3; 6]

числовой промежуток от 3 до 6

Поэтому в качестве ответа мы указывали, что значения переменной x принадлежат числовому промежутку [3; 6], то есть пересечению множеств решений первого и второго неравенства

x ∈ [3; 6]


Пример 2. Решить неравенство x m -1 x m -5 x m 4

Все неравенства, входящие в систему уже решены. Нужно только указать те решения, которые являются общими для всех неравенств.

Решением первого неравенства является числовой промежуток (−∞; −1).

Решением второго неравенства является числовой промежуток (−∞; −5).

Решением третьего неравенства является числовой промежуток (−∞; 4).

Решением системы x m -1 x m -5 x m 4 будет пересечение числовых промежутков (−∞; −1), (−∞; −5) и (−∞; 4). В данном случае этим пересечением является промежуток (−∞; −5).

(−∞; −1) ∩ (−∞; −5) ∩ (−∞; 4) = (−∞; −5)

-5 -1 i 4 на кп

На рисунке представлены числовые промежутки и неравенства, которыми эти числовые промежутки заданы. Видно, что числа, принадлежащие промежутку (−∞; −5), одновременно принадлежат всем исходным промежуткам.

Запишем ответ к системе x m -1 x m -5 x m 4 с помощью числового промежутка:

x ∈ (−∞; −5)


Пример 3. Решить неравенство y b 7 i y m 4 step 1

Решением первого неравенства > 7 является числовой промежуток (7; +∞).

Решением второго неравенства < 4 является числовой промежуток (−∞; 4).

Решением системы y b 7 i y m 4 step 1 будет пересечение числовых промежутков (7; +∞) и (−∞; 4).

В данном случае пересечением числовых промежутков (7; +∞) и (−∞; 4) является пустое множество, поскольку эти числовые промежутки не имеют общих элементов:

(7; +∞) ∩ (−∞; 4) = ∅

Если изобразить числовые промежутки (7; +∞) и (−∞; 4) на координатной прямой, то можно увидеть, что они нигде не пересекаются:

y b 7 i y m 4 координатная прямая


Объединение множеств

Объединением двух (или нескольких) исходных множеств называют множество, которое состоит из элементов, принадлежащих хотя бы одному из исходных множеств.

На практике объединение множеств состоит из всех элементов, принадлежащих исходным множествам. Поэтому и говорят, что элементы такого множества принадлежат хотя бы одному из исходных множеств.

Рассмотрим множество A с элементами 1, 2, 3 и множество B с элементами 4, 5, 6.

A = { 1, 2, 3 }

B = { 4, 5, 6 }

Зададим новое множество C и добавим в него все элементы множества A и все элементы множества B

C = { 1, 2, 3, 4, 5, 6 }

В данном случае объединением множеств A и B является множество C и обозначается следующим образом:

B = C

Символ ∪ означает объединение и заменяет собой союз ИЛИ. Тогда выражение A B = C можно прочитать так:

Элементы, принадлежащие множеству A ИЛИ множеству B, есть элементы, принадлежащие множеству C.

В определении объединения сказано, что элементы такого множества принадлежат хотя бы одному из исходных множеств. Данную фразу можно понимать в прямом смысле.

Вернёмся к созданному нами множеству C, куда входят все элементы множеств A и B. Возьмём для примера из этого множества элемент 5. Что можно про него сказать?

Если 5 является элементом множества C, а множество С является объединением множеств A и B, то можно с уверенностью заявить, что элемент 5 принадлежит хотя бы одному из множеств A и B. Так оно и есть:

A = { 1, 2, 3 }

B = { 4, 5, 6 }

C = { 1, 2, 3, 4, 5, 6 }

Возьмем ещё один элемент из множества С, например, элемент 2. Что можно про него сказать?

Если 2 является элементом множества C, а множество С является объединением множеств A и B, то можно с уверенностью заявить, что элемент 2 принадлежит хотя бы одному из множеств A и B. Так оно и есть:

A = {1, 2, 3}

B = {4, 5, 6}

C = { 1, 2, 3, 4, 5, 6 }

Если мы захотим объединить два или более множества и вдруг обнаружим, что один или несколько элементов принадлежат каждому из этих множеств, то в объединение повторяющиеся элементы будут входить только один раз.

Например, рассмотрим множество A с элементами 1, 2, 3, 4 и множество B с элементами 2, 4, 5, 6.

A = {1, 2, 3, 4}

B = {2, 4, 5, 6}

Видим, что элементы 2 и 4 одновременно принадлежат и множеству A, и множеству B. Если мы захотим объединить множества A и B, то новое множество C будет содержать элементы 2 и 4 только один раз. Выглядеть это будет так:

C = { 1, 2, 3, 4, 5, 6 }

Чтобы при объединении не допустить ошибок, обычно поступают так: сначала в новое множество добавляют все элементы первого множества, затем добавляют элементы второго множества, которые не принадлежат первому множеству. Попробуем сделать такое объединение с множествами A и B.

Итак, у нас имеются следующие исходные множества:

A = { 1, 2, 3, 4 }

B = { 2, 4, 5, 6 }

Зададим новое множество С и добавим в него все элементы множества A

C = { 1, 2, 3, 4,

Теперь добавим элементы из множества B, которые не принадлежат множеству A. Множеству A не принадлежат элементы 5 и 6. Их и добавим во множество C

C = { 1, 2, 3, 4, 5, 6 }


Пример 2. Друзьями Джона являются Том, Фред, Макс и Джордж. А друзьями Майкла являются Лео, Том, Фред и Эван. Найти объединение множеств друзей Джона и Майкла.

Для начала зададим два множества: множество друзей Джона и множество друзей Майкла.

Друзья Джона = { Том,
Фред,
Макс,
Джорж }
Друзья Майкла = { Лео,
Том,
Фред,
Эван }

Зададим новое множество с названием «Все друзья Джона и Майкла» и добавим в него всех друзей Джона и Майкла.

Заметим, что Том и Фред одновременно являются друзьями Джона и Майкла, поэтому мы добавим их в новое множество только один раз, поскольку сразу двух Томов и двух Фредов не бывает.

Все друзья Джона и Майкла = { Том, Фред, Макс, Джордж, Лео, Эван }

В данном случае множество всех друзей Джона и Майкла является объединением множеств друзей Джона и Майкла.

Друзья Джона ∪ Друзья Майкла = Все друзья Джона и Майкла


Пример 3. Даны два числовых промежутка: [−7; 0] и [−3; 5]. Найти их объединение.

Оба промежутка обрамлены квадратными скобками, значит их границы принадлежат им.

Для наглядности перечислим все целые числа, принадлежащие этим промежуткам:

−7, −6, −5, −4, −3,−2, −1, 0  ∈ [−7; 0]

−3,−2, −1, 0, 1, 2, 3, 4, 5 ∈ [−3; 5]

Объединением числовых промежутков [−7; 0] и [−3; 5] будет числовой промежуток [−7; 5], который содержит все числа промежутка [−7; 0] и [−3; 5] без повторов некоторых из чисел

−7, −6, −5, −4, −3,−2, −1, 0, 1, 2, 3, 4, 5 ∈ [−7; 5]

Обратите внимание, что числа −3,−2, −1 принадлежали и первому промежутку и второму. Но поскольку в объединение допускается включать такие элементы только один раз, мы включили их единоразово.

Значит объединением числовых промежутков [−7; 0] и [−3; 5] будет числовой промежуток [−7; 5]

[−7; 0] ∪ [−3; 5] = [−7; 5]

Изобразим на координатной прямой промежутки [−7; 0] и [−3; 5]. На верхней области отметим числовой промежуток [−7; 0], на нижней — промежуток [−3; 5]

два промежутка на одной кп -7 0 b -5 5

Ранее мы выяснили, что промежуток [−7; 5] является объединением промежутков [−7; 0] и [−3; 5]. Здесь полезно вспомнить про определение объединения множеств, которое было приведено в самом начале. Объединение трактуется, как множество, состоящее из всех элементов, принадлежащих хотя бы одному из исходных множеств.

Действительно, если взять любое число из промежутка [−7; 5], то окажется, что оно принадлежит хотя бы одному из промежутков: либо промежутку [−7; 0] либо промежутку [−3; 5].

Возьмём из промежутка [−7; 5] любое число, например число 2. Поскольку промежуток [−7; 5] является объединением промежутков [−7; 0] и [−3; 5], то число 2 будет принадлежать хотя бы одному из этих промежутков. В данном случае число 2 принадлежит промежутку [−3; 5]

два промежутка на одной кп -7 0 b -5 5 шаг 2

Возьмём ещё какое-нибудь число. Например, число −4. Это число будет принадлежать хотя бы одному из промежутков: [−7; 0] или [−3; 5]. В данном случае оно принадлежит промежутку [−7; 0]

два промежутка на одной кп -7 0 b -5 5 шаг 3

Возьмём ещё какое-нибудь число. Например, число −2. Оно принадлежит как промежутку [−7; 0], так и промежутку [−3; 5]. Но на координатной прямой оно указывается только один раз, поскольку в одной точке сразу два числа −2 не бывает.

Не каждое объединение числовых промежутков является числовым промежутком. Например, попробуем найти объединение числовых промежутков [−2; −1] и [4; 7].

Идея остаётся та же самая — объединением числовых промежутков [−2;−1] и [4; 7] будет множество, состоящее из элементов, принадлежащих хотя бы одному из промежутков: [−2; −1] или [4; 7]. Но это множество не будет являться числовым промежутком. Для наглядности перечислим все целые числа, принадлежащие этому объединению:

[−2; −1] ∪ [4; 7] = { −2, −1, 4, 5, 6, 7 }

Получили множество { −2, −1, 4, 5, 6, 7 }. Это множество не является числовым промежутком по причине того, что числа, располагающиеся между −1 и 4, не вошли в полученное множество

-2 -1 и 4 7 на кп

Числовой промежуток должен содержать все числа от левой границы до правой. Если одно из чисел отсутствует, то числовой промежуток теряет смысл. Допустим, имеется линейка длиной 15 см

линейка 15 см

Эта линейка является числовым промежутком [0; 15], поскольку содержит все числа в промежутке от 0 до 15 включительно. Теперь представим, что на линейке после числа 9 сразу следует число 12.

линейка 15 см ошибка

Эта линейка не является линейкой в 15 см, и её нежелательно использовать для измерения. Также, её нельзя назвать числовым промежутком [0; 15], поскольку она не содержит все числа, которые должна была содержать.


Решение неравенств, содержащих знак ≠

Некоторые неравенства содержат знак  (не равно). Например, 2≠ 8. Чтобы решить такое неравенство, нужно найти множество значений переменной x, при которых левая часть не равна правой части.

Решим неравенство 2≠ 8. Разделим обе части данного неравенства на 2, тогда получим:

2x n r 8 шаг 1

Получили равносильное неравенство ≠ 4. Решением этого неравенства является множество всех чисел, не равных 4. То есть, если мы подставим в неравенство ≠ 4 любое число, которое не равно 4, то получим верное неравенство.

Подставим, например, число 5

5 ≠ 4 — верное неравенство, поскольку 5 не равно 4

Подставим 7

7 ≠ 4 — верное неравенство, поскольку 7 не равно 4

И поскольку неравенство ≠ 4 равносильно исходному неравенству 2≠ 8, то решения неравенства ≠ 4 будут подходить и к неравенству 2≠ 8. Подставим те же тестовые значения 5 и 7 в неравенство 2≠ 8.

2 × 5 ≠ 8

2 × 7 ≠ 8

Изобразим множество решений неравенства x ≠ 4 на координатной прямой. Для этого выколем точку 4 на координатной прямой, а всю оставшуюся область с обеих сторон выделим штрихами:

чп от -b do 4 i 4 do b

Теперь запишем ответ в виде числового промежутка. Для этого воспользуемся объединением множеств. Любое число, являющееся решением неравенства 2≠ 8 будет принадлежать либо промежутку (−∞; 4) либо промежутку (4; +∞). Так и записываем, что значения переменной x принадлежат (−∞; 4) или (4; +∞). Напомним, что для слова «или» используется символ 

x ∈ (−∞; 4) ∪ (4; +∞)

В этом выражении говорится, что значения, принимаемые переменной x, принадлежат промежутку (−∞; 4) или промежутку (4; +∞).

Неравенства, содержащие знак , также можно решать, как обычные уравнения. Для этого знак  заменяют на знак =. Тогда получится обычное уравнение. В конце решения найденное значение переменной x нужно исключить из множества решений.

Решим предыдущее неравенство 2≠ 8, как обычное уравнение. Заменим знак  на знак равенства =, получим уравнение 2x = 8. Разделим обе части данного уравнения на 2, получим = 4.

Видим, что при x, равном 4, уравнение обращается в верное числовое равенство. При других значениях равенства соблюдаться не будет. Эти другие значения нас и интересуют. А для этого достаточно исключить найденную четвёрку из множества решений.


Пример 2. Решить неравенство 3− 5 ≠ 1 − 2x

Перенесем −2x из правой части в левую часть, изменив знак, а −5 из левой части перенесём в правую часть, опять же изменив знак:

3x - 5 naravno 1 - 2 x шаг 1

Приведем подобные слагаемые в обеих частях:

3x - 5 naravno 1 - 2 x шаг 2

Разделим обе части получившегося неравенства на 5

3x - 5 naravno 1 - 2 x шаг 3

Решением неравенства ≠ 1,2 является множество всех чисел, не равных 1,2.

Изобразим множество решений неравенства ≠ 1,2 на координатной прямой и запишем ответ в виде числового промежутка:

3x - 5 naravno 1 - 2 x шаг 4

x ∈ (−∞; 1,2) ∪ (1,2; +∞)

В этом выражении говорится, что значения, принимаемые переменной x принадлежат промежутку (−∞; 1,2) или промежутку (1,2; +∞)


Решение совокупностей неравенств

Рассмотрим ещё один вид неравенств, который называется совокупностью неравенств. Такой тип неравенств, возможно, вы будете решать редко, но для общего развития полезно изучить и их.

Совокупность неравенств очень похожа на систему неравенств. Различие в том, что в системе неравенств нужно найти множество решений, удовлетворяющих каждому неравенству, образующему эту систему.

А в случае с совокупностью неравенств, нужно найти множество решений, удовлетворяющих хотя бы одному неравенству, образующему эту совокупность.

Совокупность неравенств обозначается квадратной скобкой. Например, следующая запись из двух неравенств является совокупностью:

совокупность x b 3 x m 6

Решим данную совокупность. Сначала нужно решить каждое неравенство по отдельности.

Решением первого неравенства ≥ 3 является числовой промежуток [3; +∞). Решением второго неравенства ≤ 6 является числовой промежуток (−∞; 6].

Множество значений x, при которых верно хотя бы одно из неравенств, будут принадлежать промежутку [3; +∞) или промежутку (−∞; 6]. Так и записываем:

x ∈ [3; +∞) ∪ (−∞; 6]

В этом выражении говорится, что переменная x, входящая в
совокупность совокупность x b 3 x m 6 принимает все значения, принадлежащие промежутку [3; +∞) или промежутку (−∞; 6]. А это то, что нам нужно. Ведь решить совокупность означает найти множество решений, удовлетворяющих хотя бы одному неравенству, образующему эту совокупность. А любое число из промежутка [3; +∞) или промежутка (−∞; 6] будет удовлетворять хотя бы одному неравенству.

Например, число 9 из промежутка [3; +∞) удовлетворяет первому неравенству ≥ 3. А число −7 из промежутка (−∞; 6] удовлетворяет второму неравенству ≤ 6.

Посмотрите внимательно на выражение ∈ [3; +∞) ∪ (−∞; 6], а именно на его правую часть. Ведь выражение [3; +∞) ∪ (−∞; 6] представляет собой объединение числовых промежутков [3; +∞) и (−∞; 6]. Точнее, объединение множеств решений первого и второго неравенства.

Стало быть, решением совокупности неравенств является объединение множеств решений первого и второго неравенства.

Иначе говоря, решением совокупности совокупность x b 3 x m 6 будет объединение числовых промежутков [3; +∞) и (−∞; 6]

числовой промежуток от 3 до 6

Объединением числовых промежутков [3; +∞) и (−∞; 6] является промежуток (−∞; +∞). Точнее, объединением числовых промежутков [3; +∞) и (−∞; 6] является вся координатная прямая. А вся координатная прямая это все числа, которые только могут быть

[3; +∞) ∪ (−∞; 6] = (−∞; +∞)

Ответ можно оставить таким, каким мы его записали ранее:

∈ [3; +∞) ∪ (−∞; 6]

либо заменить на более короткий:

∈ (−∞; +∞)

Возьмём любое число из полученного объединения, и проверим удовлетворяет ли оно хотя бы одному неравенству.

Возьмем для примера число 8. Оно удовлетворяет первому неравенству ≥ 3.

8 ≥ 3

Возьмем еще какое-нибудь число, например, число 1. Оно удовлетворяет второму неравенству ≤ 6

1 ≤ 6

Возьмем еще какое-нибудь число, например, число 5. Оно удовлетворяет и первому неравенству x ≥ 3 и второму ≤ 6

5 b 3 5 m 6


Пример 2. Решить совокупность неравенств совокупность 2x -1 3 - 0

Чтобы решить эту совокупность, нужно найти множество решений, которые удовлетворяют хотя бы одному неравенству, образующему эту совокупность.

Для начала найдём множество решений первого неравенства < −0,25. Этим множеством является числовой промежуток (−∞; −0,25).

Множеством решений второго неравенства x ≥ −7 является числовой промежуток [−7; +∞).

Решением совокупности неравенств совокупность 2x -1 3 - 0 будет объединение множеств решений первого и второго неравенства.

∈ (−∞; −0,25) ∪ [−7; +∞)

Иначе говоря, решением совокупности совокупность 2x -1 3 - 0 будет объединение числовых промежутков (−∞; −0,25) и [−7; +∞)

числовой промежуток от -7 до -025

Объединением числовых промежутков (−∞; −0,25) и [−7; +∞) является является вся координатная прямая. А вся координатная прямая это все числа, которые только могут быть

(−∞; −0,25) ∪ [−7; +∞) = (−∞; +∞)

Ответ можно оставить таким, каким мы его записали ранее:

∈ (−∞; −0,25) ∪ [−7; +∞)

либо заменить на более короткий:

∈ (−∞; +∞)


Пример 3. Решить совокупность неравенств 3x na 2 m 2x - 1

Решим каждое неравенство по отдельности:

3x na 2 m 2x - 1 решение

Множеством решений первого неравенства x < −3 является числовой промежуток (−∞; −3).

Множеством решений второго неравенства ≤ 0 является числовой промежуток (−∞; 0].

Решением совокупности неравенств x m -3 i x m b 0 будет объединение множеств решений первого и второго неравенства.

∈ (−∞; −3) ∪ (−∞; 0]

Иначе говоря, решением совокупности x m -3 i x m b 0 будет объединение числовых промежутков (−∞; −3) и (−∞; 0]

кп -3 0

Объединением числовых промежутков (−∞; −3) и (−∞; 0] является числовой промежуток (−∞; 0]

(−∞; −3) ∪ (−∞; 0] = (−∞; 0]

Ответ можно оставить таким, каким мы его записали ранее:

∈ (−∞; −3) ∪ (−∞; 0]

либо заменить на более короткий:

∈ (−∞; 0]


Задания для самостоятельного решения

Задание 1. Найдите пересечение и объединение следующих множеств:
А = { 1, 2, 5 }
B = { 3, 4, 5 }
Решение:
A ∩ B = { 5 }
A ∪ B = { 1, 2, 3, 4, 5 }
Задание 2. Найдите пересечение и объединение следующих множеств:
А = { −3, −2, −1, 0, 1, 2 }
B = { 1, 2, 3, 4, 5 }
Решение:
A ∩ B = { 1, 2 }
A ∪ B = { −3, −2, −1, 0, 1, 2, 3, 4, 5 }
Задание 3. Найдите пересечение и объединение следующих множеств:
А = { 1, 2, 3 }
B = { 3, 4 }
Решение:
A ∩ B = { 3 }
A ∪ B = { 1, 2, 3, 4 }
Задание 4. Найдите пересечение и объединение следующих числовых промежутков:
[−2; 7) и (0; 10]
Решение:

[−2; 7) ∩ (0; 10] = (0; 7)
[−2; 7) ∪ (0; 10] = [2; 10]
Задание 5. Найдите пересечение и объединение следующих числовых промежутков:
(−∞; 3] и [−2; 1)
Решение:

(−∞; 3] ∩ [−2; 1) = [−2; 1)
(−∞; 3] ∪ [−2; 1) = (−∞; 3]
Задание 6. Найдите пересечение и объединение следующих числовых промежутков:
(3; +∞) и [2; +∞)
Решение:

(3; +∞) ∩ [2; +∞) = (3; +∞)
(3; +∞) ∪ [2; +∞) = [2; +∞)
Задание 7. Найдите пересечение и объединение следующих числовых промежутков:
[−3; −1] и (−2; 4]
Решение:

[−3; −1] ∩ (−2; 4] = (−2; −1]
[−3; −1] ∪ (−2; 4] = [−3; 4]
Задание 8. Решите неравенство:
Решение:


Задание 9. Решите неравенство:
Решение:


Задание 10. Решите совокупность неравенств:
Решение:


Задание 11. Решите совокупность неравенств:
Решение:


Задание 12. Решите совокупность неравенств:
Решение:



Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Системы линейных неравенств с одной переменной

Примеры решения систем линейных неравенств с одной переменной

Несколько линейных неравенств, удовлетворяющих одним и тем же решениям, образуют систему.

Рассмотрим простейший пример. Системаx b 4 i x m 9 состоит из двух неравенств, которые уже решены.

Решениями первого неравенства являются все числа, которые больше 4. Решениями второго неравенства являются все числа, которые меньше 9.

Изобразим множество решений каждого неравенства на координатной прямой и запишем ответы к ним в виде числовых промежутков:

числовые промежутки от 4 до б и минус б до 9

Но дело в том, что неравенства > 4 и < 9 соединены знаком системы, а значит зависимы друг от друга. Им не дозволяется раскидываться решениями, как захочется. Наша задача указать решения, которые одновременно будут удовлетворять и первому неравенству и второму.

Говоря по-простому, нужно указать числа, которые больше 4, но меньше 9. Очевидно, что речь идет о числах, находящихся в промежутке от 4 до 9.

Значит решениями системы x b 4 i x m 9 являются числа от 4 до 9. Границы 4 и 9 не включаются во множество решений системы, поскольку неравенства > 4 и < 9 строгие. Ответ можно записать в виде числового промежутка:

x ∈ ( 4 ; 9 )

Также, нужно изобразить множество решений системы на координатной прямой.

Для системы линейных неравенств решение на координатной прямой изображают так:

Сначала указывают границы обоих неравенств:

числовой промежуток от 4 до 9 step 1

На верхней области отмечают множество решений первого неравенства > 4

числовой промежуток от 4 до 9 step 2

На нижней области отмечают множество решений второго неравенства < 9

числовой промежуток от 4 до 9 step 3

Нас интересует область, которая отмечена штрихами с обеих сторон. В этой области и располагаются решения системы x b 4 i x m 9. Видно, что эта область располагается в промежутке от 4 до 9. Для наглядности выделим эту область красным цветом:

числовой промежуток от 4 до 9 step 4

Для проверки можно взять любое число из этого промежутка и подставить его в исходную систему x b 4 i x m 9. Возьмем, например, число 6

система 6 b 4 и 6 м 9 проверка

Видим, что решение 6 удовлетворяет обоим неравенствам. Возьмём ещё какое-нибудь число из промежутка (4; 9), например, число 8

система8 б 4 и 8 м 9 проверка

Видим, что решение 8 удовлетворяет обоим неравенствам.

Исходя из рассмотренного примера, можно сформировать правило для решения системы линейных неравенств:

Чтобы решить систему линейных неравенств, нужно по отдельности решить каждое неравенство, и указать в виде числового промежутка множество решений, удовлетворяющих каждому неравенству.

Пример 2. Решить систему неравенств x b 17 i x b 12 step 1

Решениями первого неравенства являются все числа, которые больше 17. Решениями второго неравенства являются все числа, которые больше 12.

Решениями же обоих неравенств являются все числа, которые больше 17.

Изобразим множество решений системы x b 17 i x b 12 step 1 на координатной прямой и запишем ответ в виде числового промежутка.

Для начала отметим на координатной прямой границы обоих неравенств:

x b 17 i x b 12 step 2

На верхней области отметим множество решений первого неравенства > 17

x b 17 i x b 12 step 3

На нижней области отметим множество решений второго неравенства > 12

x b 17 i x b 12 step 4

Нас интересует область, которая отмечена штрихами с обеих сторон. В этой области и располагаются решения системы x b 17 i x b 12 step 1. Видно, что эта область располагается в промежутке от 17 до плюс бесконечности. Запишем ответ в виде числового промежутка:

x ∈ ( 17 ; +∞ )


Пример 3. Решить систему неравенств 2x - 12 b 0 i 3x b 9 step 1

Решим каждое неравенство по отдельности. Делать это можно внутри системы. Если испытываете затруднения при решении каждого неравенства, обязательно изучите предыдущий урок

2x - 12 b 0 i 3x b 9 step 2

Получили систему system x b 6 x b 3. На этом решение завершается. Осталось изобразить множество решений системы на координатной прямой и записать ответ в виде числового промежутка.

Как и в прошлом примере, сначала нужно отметить границы обоих неравенств, затем отметить множество решений каждого неравенства (x > 6 и x > 3). Область координатной прямой, отмеченная с обеих сторон, будет промежутком, в котором располагается множество решений системы system x b 6 x b 3

2x - 12 b 0 i 3x b 9 step 3

x ∈ ( 6 ; + ∞ )


Пример 4. Решить систему неравенств 10-4x b 0 3x - 1 b 5 step 1

Решим каждое неравенство по отдельности:

10-4x b 0 3x - 1 b 5 step 2

Изобразим множество решений системы 10-4x b 0 3x - 1 b 5 step 3 на координатной прямой и запишем ответ в виде числового промежутка:

2x - 12 b 0 i 3x b 9 step 4

2x - 12 b 0 i 3x b 9 step 5


Пример 5. Решить неравенство 12 na 3 - x - 08x b i r 6 step 1

Решим каждое неравенство по отдельности:

12 na 3 - x - 08x b i r 6 step 2

Изобразим множество решений системы 12 na 3 - x - 08x b i r 6 step 6 на координатной прямой и запишем ответ в виде числового промежутка:

12 na 3 - x - 08x b i r 6 step 4

промежуток от минус бесконечности до минус 1 на 2


Когда решений нет

Если неравенства, входящие в систему, не имеют общих решений, то говорят, что система не имеет решений.

Пример 1. Решить неравенство 6y b i r 42 step 1

Решим каждое неравенство по отдельности:

6y b i r 42 step 2

Решениями первого неравенства являются все числа, которые больше 7, включая число 7. Решениями второго неравенства являются все числа, которые меньше −3, включая число −3.

Видим, что у данных неравенств нет общих решений. Увидеть это наглядно позволит координатная прямая. Отметим на ней множество решений каждого неравенства:

6y b i r 42 step 3

На координатной прямой нет областей, которые отмечены штрихами с обеих сторон. Это говорит о том, что неравенства ≥ 7 и ≤ −3 не имеют общих решений. Значит не имеет решений система 6y b i r 42 step 4

А если не имеет решений приведённая равносильная система 6y b i r 42 step 4, то не имеет решений и исходная система 6y b i r 42 step 1

Ответ: решений нет.


Пример 2. Решить систему неравенств 15x plus 45 m r 0 step 2

Решим каждое неравенство по отдельности:

15x plus 45 m r 0 step 1

Изобразим множество решений неравенств x ≤ −3 и x ≥ 9 на координатной прямой:

15x plus 45 m r 0 step 3

Видим, что на координатной прямой нет областей, которые отмечены штрихами с обеих сторон. Значит неравенства x ≤ −3 и x ≥ не имеют общих решений. А значит не имеет решений система 15x plus 45 m r 0 step 4

А если не имеет решений приведённая равносильная система 15x plus 45 m r 0 step 4, то не имеет решений и исходная система15x plus 45 m r 0 step 2

Ответ: решений нет.


Пример 3.  Решить систему неравенств 07 na 5a plus 1 - 05 na 1 plus a m 3a step 1

Решим каждое неравенство по отдельности:

07 na 5a plus 1 - 05 na 1 plus a m 3a step 2

Получили неравенства 0 < −0,2 и > 5. Первое неравенство не является верным и не имеет решений. Решением второго неравенство > 5 являются все числа, которые больше 5. Но поскольку первое неравенство не будет верным ни при каком a, то можно сделать вывод, что у неравенств нет общих решений. А значит не имеет решений исходная система 07 na 5a plus 1 - 05 na 1 plus a m 3a step 1

Ответ: решений нет.


Задания для самостоятельного решения

Задание 1. Решите неравенство:
Решение:

Задание 2. Решите неравенство:
Решение:


Задание 3. Решите неравенство:
Решение:


Задание 4. Решите неравенство:
Решение:


Задание 5. Решите неравенство:
Решение:


Задание 6. Решите неравенство:
Решение:


Задание 7. Решите неравенство:
Решение:


Задание 8. Решите неравенство:
Решение:

Решений нет


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Общие сведения о неравенствах

Данный материал может показаться сложным для понимания. Рекомендуется изучать его маленькими частями.

Определения и свойства

Неравенством мы будем называть два числовых или буквенных выражения, соединенных знаками >, <, ≥, ≤ или ≠.

Пример: 5 > 3

Данное неравенство говорит о том, что число 5 больше, чем число 3. Острый угол знака неравенства должен быть направлен в сторону меньшего числа. Это неравенство является верным, поскольку 5 больше, чем 3.

Если на левую чашу весов положить арбуз массой 5 кг, а на правую — арбуз массой 3 кг, то левая чаша перевесит правую, и экран весов покажет, что левая чаша тяжелее правой:

весы арбуз на левой чаше 5 кг а на правой 3 кг

Если 5 > 3, то 3 < 5. То есть, левую и правую часть неравенства можно поменять местами, изменив знак неравенства на противоположный. В ситуации с весами: большой арбуз можно положить на правую чашу, а маленький арбуз на левую. Тогда правая чаша перевесит левую, и экран покажет знак <

весы арбуз на левой чаше3 кг а на правой 5 кг

Если в неравенстве 5 > 3, не трогая левую и правую часть, поменять знак на <, то получится неравенство 5 < 3. Это неравенство не является верным, поскольку число 3 не может быть больше числа 5.

Числа, которые располагаются в левой и правой части неравенства, будем называть членами этого неравенства. Например, в неравенстве 5 > 3 членами являются числа 5 и 3.

Рассмотрим некоторые важные свойства для неравенства 5 > 3.
В будущем эти свойства будут работать и для других неравенств.

Свойство 1.

Если к левой и правой части неравенства 5 > 3 прибавить или вычесть одно и то же число, то знак неравенства не изменится.

Например, прибавим к обеим частям неравенства число 4. Тогда получим:

5 больше 3 свойство 2

Видим, что левая часть по-прежнему больше правой.

Теперь попробуем вычесть из обеих частей неравенства 5 > 3 какое-нибудь число, скажем число 2

5 больше 3 свойство 5

Видим, что левая часть по-прежнему больше правой.

Из данного свойства следует, что любой член неравенства можно перенести из одной части в другую часть, изменив знак этого члена. Знак неравенства при этом не изменится.

Например, перенесём в неравенстве 5 > 3, член 5 из левой части в правую часть, изменив знак этого члена. После переноса члена 5 в правую часть, в левой части ничего не останется, поэтому запишем там 0

0 > 3 − 5

0 > −2

Видим, что левая часть по-прежнему больше правой.


Свойство 2.

Если обе части неравенства умножить или разделить на одно и то же положительное число, то знак неравенства не изменится.

Например, умножим обе части неравенства 5 > 3 на какое-нибудь положительное число, скажем на число 2. Тогда получим:

5 больше 3 свойство 3

Видим, что левая часть по-прежнему больше правой.

Теперь попробуем разделить обе части неравенства 5 > 3 на какое-нибудь число. Разделим их на 2

5 больше 3 свойство 6

Видим, что левая часть по-прежнему больше правой.

Свойство 3.

Если обе части неравенства умножить или разделить на одно и то же отрицательное число, то знак неравенства изменится на противоположный.

Например, умножим обе части неравенства 5 > 3 на какое-нибудь отрицательное число, скажем на число −2. Тогда получим:

5 больше 3 свойство 4

Видим, что левая часть стала меньше правой. То есть, знак неравенства изменился на противоположный.

Теперь попробуем разделить обе части неравенства 5 > 3 на какое-нибудь отрицательное число. Давайте разделим их на −1

5 больше 3 свойство 7

Видим, что левая часть стала меньше правой. То есть, знак неравенства изменился на противоположный.

Само по себе неравенство можно понимать, как некоторое условие. Если условие выполняется, то неравенство является верным. И наоборот, если условие не выполняется, то неравенство неверно.

Например, чтобы ответить на вопрос является ли верным неравенство 7 > 3, нужно проверить выполняется ли условие «больше ли 7, чем 3». Мы знаем, что число 7 больше, чем число 3. То есть, условие выполнено, а значит и неравенство 7 > 3 верно.

Неравенство 8 < 6 не является верным, поскольку не выполняется условие «8 меньше, чем 6».

Другим способом определения верности неравенства является составление разности из левой и правой части данного неравенства. Если разность положительна, то левая часть больше правой части. И наоборот, если разность отрицательна, то левая часть меньше правой части. Более точно это правило выглядит следующим образом:

Число a больше числа b, если разность a − b положительна. Число a меньше числа b, если разность a − b отрицательна.

Например, мы выяснили, что неравенство 7 > 3 является верным, поскольку число 7 больше, чем число 3. Докажем это с помощью правила, приведённого выше.

Составим разность из членов 7 и 3. Тогда получим 7 − 3 = 4. Согласно правилу, число 7 будет больше числа 3, если разность 7 − 3 окажется положительной. У нас она равна 4, то есть разность положительна. А значит число 7 больше числа 3.

Проверим с помощью разности верно ли неравенство 3 < 4. Составим разность, получим 3 − 4 = −1. Согласно правилу, число 3 будет меньше числа 4, если разность 3 − 4 окажется отрицательной. У нас она равна −1, то есть разность отрицательна. А значит число 3 меньше числа 4.

Проверим верно ли неравенство 5 > 8. Составим разность, получим 5 − 8 = −3. Согласно правилу, число 5 будет больше числа 8, если разность 5 − 8 окажется положительной. У нас разность равна −3, то есть она не является положительной. А значит число 5 не больше числа 3. Иными словами, неравенство 5 > 8 не является верным.


Строгие и нестрогие неравенства

Неравенства, содержащие знаки >, < называют строгими. А неравенства, содержащие знаки ≥, ≤  называют нестрогими.

Примеры строгих неравенства мы рассматривали ранее. Таковыми являются неравенства 5 > 3, 7 < 9.

Нестрогим, например, является неравенство 2 ≤ 5. Данное неравенство читают следующим образом: «2 меньше или равно 5».

Запись 2 ≤ 5 является неполной. Полная запись этого неравенства выглядит следующим образом:

2 < 5 или 2 = 5

Тогда становится очевидным, что неравенство 2 ≤ 5 состоит из двух условий: «два меньше пять» и «два равно пять».

Нестрогое неравенство верно в том случае, если выполняется хотя бы одно из его условий. В нашем примере верным является условие «2 меньше 5». Значит и само неравенство 2 ≤ 5 верно.

Пример 2. Неравенство 2 ≤ 2 является верным, поскольку выполняется одно из его условий, а именно 2 = 2.

Пример 3. Неравенство 5 ≤ 2 не является верным, поскольку не выполняется ни одно из его условий: ни 5 < 2 ни 5 = 2.


Двойное неравенство

Число 3 больше, чем число 2 и меньше, чем число 4. В виде неравенства это высказывание можно записать так: 2 < 3 < 4. Такое неравенство называют двойным.

Двойное неравенство может содержать знаки нестрогих неравенств. К примеру, если число 5 больше или равно, чем число 2, и меньше или равно, чем число 7, то можно записать, что 2 ≤ 5 ≤ 7

Чтобы правильно записать двойное неравенство, сначала записывают член находящийся в середине, затем член находящийся слева, затем член находящийся справа.

Например, запишем, что число 6 больше, чем число 4, и меньше, чем число 9.

Сначала записываем 6

4 m 6 m 9 step 1

Слева записываем, что это число больше, чем число 4

4 m 6 m 9 step 2

Справа записываем, что число 6 меньше, чем число 9


Неравенство с переменной

Неравенство, как и равенство может содержать переменную.

Например, неравенство x > 2 содержит переменную x. Обычно такое неравенство нужно решить, то есть выяснить при каких значениях x данное неравенство становится верным.

Решить неравенство означает найти такие значения переменной x, при которых данное неравенство становится верным.

Значение переменной, при котором неравенство становится верным, называется решением неравенства.

Неравенство > 2 становится верным при x = 3, x = 4, x = 5, x = 6 и так далее до бесконечности. Видим, что это неравенство имеет не одно решение, а множество решений.

Другими словами, решением неравенства x > 2 является множество всех чисел, бóльших 2. При этих числах неравенство будет верным. Примеры:

3 > 2

4 > 2

5 > 2

Число 2, располагающееся в правой части неравенства x > 2, будем называть границей данного неравенства. В зависимости от знака неравенства, граница может принадлежать множеству решений неравенства либо не принадлежать ему.

В нашем примере граница неравенства не принадлежит множеству решений, поскольку при подстановке числа 2 в неравенство x > 2 получается не верное неравенство 2 > 2. Число 2 не может быть больше самого себя, поскольку оно равно самому себе (2 = 2).

Неравенство x > 2 является строгим. Его можно прочитать так: «x строго больше 2″. То есть, все значения, принимаемые переменной x должны быть строго больше 2. В противном случае, неравенство верным не будет.

Если бы нам было дано нестрогое неравенство ≥ 2, то решениями данного неравенства были бы все числа, которые больше 2, в том числе и само число 2. В этом неравенстве граница 2 принадлежит множеству решений неравенства, поскольку при подстановке числа 2 в неравенство x ≥ 2 получается верное неравенство 2 ≥ 2. Ранее было сказано, что нестрогое неравенство является верным, если выполняется хотя бы одно из его условий. В неравенстве 2 ≥ 2 выполняется условие 2 = 2, поэтому и само неравенство 2 ≥ 2 верно.


Как решать неравенства

Процесс решения неравенств во многом схож с процессом решения уравнений. При решении неравенств мы будем применять свойства, которые изучили вначале данного урока, такие как: перенос слагаемых из одной части неравенства в другую часть, меняя знак; умножение (или деление) обеих частей неравенства на одно и то же число.

Эти свойства позволяют получить неравенство, которое равносильно исходному. Равносильными называют неравенства, решения которых совпадают.

Решая уравнения мы выполняли тождественные преобразования до тех пор, пока в левой части уравнения не оставалась переменная, а в правой части значение этой переменной (например: x = 2, x = 5). Иными словами, заменяли исходное уравнение на равносильное ему уравнение до тех пор, пока не получалось уравнение вида x = a, где a значение переменной x. В зависимости от уравнения, корней могло быть один, два, бесконечное множество, либо не быть совсем.

А при решении неравенств мы будем заменять исходное неравенство на равносильное ему неравенство до тех пор, пока в левой части не останется переменная этого неравенства, а в правой части его граница.

Пример 1. Решить неравенство 2> 6

Итак, нужно найти такие значения x, при подстановке которых в 2> 6 получится верное неравенство.

Вначале данного урока было сказано, что если обе части неравенства разделить на какое-нибудь положительное число, то знак неравенства не изменится. Если применить это свойство к неравенству, содержащему переменную, то получится неравенство равносильное исходному.

В нашем случае, если мы разделим обе части неравенства 2> 6 на какое-нибудь положительное число, то получится неравенство, которое равносильно исходному неравенству 2> 6. 

Итак, разделим обе части неравенства на 2.

2x na 2 b 6 na 2 step 1

В левой части осталась переменная x, а правая часть стала равна 3. Получилось равносильное неравенство > 3. На этом решение завершается, поскольку в левой части осталась переменная, а в правой части граница неравенства.

Теперь можно сделать вывод, что решениями неравенства > 3 являются все числа, которые больше 3. Это числа 4, 5, 6, 7 и так далее до бесконечности. При этих значениях неравенство > 3 будет верным.

4 > 3

5 > 3

6 > 3

7 > 3

Отметим, что неравенство > 3 является строгим. «Переменная x строго больше трёх».

А поскольку неравенство > 3 равносильно исходному неравенству 2> 6, то их решения будут совпадать. Иначе говоря, значения, которые подходят неравенству > 3, будут подходить и неравенству 2> 6. Покажем это.

Возьмём, например, число 5 и подставим его сначала в полученное нами равносильное неравенство > 3, а потом в исходное 2> 6.

проверка неравенства 2x b 6

Видим, что в обоих случаях получается верное неравенство.

После того, как неравенство решено, ответ нужно записать в виде так называемого числового промежутка следующим образом:

числовой промежуток от трех до плюс бесконечности

В этом выражении говорится, что значения, принимаемые переменной x, принадлежат числовому промежутку от трёх до плюс бесконечности.

Иначе говоря, все числа, начиная от трёх до плюс бесконечности являются решениями неравенства > 3. Знак  в математике означает бесконечность.

Учитывая, что понятие числового промежутка очень важно, остановимся на нём подробнее.


Числовые промежутки

Числовым промежутком называют множество чисел на координатной прямой, которое может быть описано с помощью неравенства.

Допустим, мы хотим изобразить на координатной прямой множество чисел от 2 до 8. Для этого сначала на координатной прямой отмечаем точки с координатами 2 и 8, а затем выделяем штрихами ту область, которая располагается между координатами 2 и 8. Эти штрихи будут играть роль чисел, располагающихся между числами 2 и 8

числовой промежуток от 2 до 8 интервал

Числа 2 и 8 назовём границами числового промежутка. Рисуя числовой промежуток, точки для его границ изображают не в виде точек как таковых, а в виде кружков, которые можно разглядеть.

Границы могут принадлежать числовому промежутку либо не принадлежать ему.

Если границы не принадлежат числовому промежутку, то они изображаются на координатной прямой в виде пустых кружков.

Если границы принадлежат числовому промежутку, то кружки необходимо закрасить.

На нашем рисунке кружки были оставлены пустыми. Это означало, что границы 2 и 8 не принадлежат числовому промежутку. Значит в наш числовой промежуток будут входить все числа от 2 до 8, кроме чисел 2 и 8.

Если мы хотим включить границы 2 и 8 в числовой промежуток, то кружки необходимо закрасить:

числовой промежуток от 2 до 8 закрытые границы

В данном случае в числовой промежуток будут входить все числа от 2 до 8, включая числа 2 и 8.

На письме числовой промежуток обозначается указанием его границ с помощью круглых или квадратных скобок.

Если границы не принадлежат числовому промежутку, то границы обрамляются круглыми скобками.

Если границы принадлежат числовому промежутку, то границы обрамляются квадратными скобками.

На рисунке представлено два числовых промежутка от 2 до 8 с соответствующими обозначениями:

числовой промежуток от 2 до 6 рисунок 3

На первом рисунке числовой промежуток обозначен с помощью круглых скобок, поскольку границы 2 и 8 не принадлежат этому числовому промежутку.

На втором рисунке числовой промежуток обозначен с помощью квадратных скобок, поскольку границы 2 и 8 принадлежат этому числовому промежутку.

С помощью числовых промежутков можно записывать ответы к неравенствам. Например, ответ к двойному неравенству 2 ≤ ≤ 8 записывается так:

x ∈ [ 2 ; 8 ]

То есть, сначала записывают переменную, входящую в неравенство, затем с помощью знака принадлежности  указывают к какому числовому промежутку принадлежат значения этой переменной. В данном случае выражение x ∈ [ 2 ; 8 ] указывает на то, что переменная x, входящая в неравенство 2 ≤ ≤ 8, принимает все значения в промежутке от 2 до 8 включительно. При этих значениях неравенство будет верным.

Обратим внимание на то, что ответ записан с помощью квадратных скобок, поскольку границы неравенства 2 ≤ ≤ 8, а именно числа 2 и 8 принадлежат множеству решений этого неравенства.

Множество решений неравенства 2 ≤ ≤ 8 также можно изобразить с помощью координатной прямой:

числовой промежуток от 2 до 8 закрытые границы

Здесь границы числового промежутка 2 и 8 соответствуют границам неравенства 2 ≤ ≤ 8, а выделенная штрихами область соответствует множеству значений x, которые являются решениями неравенства 2 ≤ ≤ 8.

В некоторых источниках границы, которые не принадлежат числовому промежутку, называют открытыми.

Открытыми их называют по той причине, что числовой промежуток остаётся открытым из-за того, что его границы не принадлежат этому числовому промежутку. Пустой кружок на координатной прямой математики называют выколотой точкой. Выколоть точку значит исключить её из числового промежутка или из множества решений неравенства.

А в случае, когда границы принадлежат числовому промежутку, их называют закрытыми (или замкнутыми), поскольку такие границы закрывают (замыкают) собой числовой промежуток. Закрашенный кружок на координатной прямой также говорит о закрытости границ.

Существуют разновидности числовых промежутков. Рассмотрим каждый из них.

Числовой луч

Числовым лучом называют числовой промежуток, который задаётся неравенством x ≥ a, где a — граница данного неравенства, x — решение неравенства.

Пусть = 3. Тогда неравенство x ≥ a примет вид ≥ 3. Решениями данного неравенства являются все числа, которые больше 3, включая само число 3.

Изобразим числовой луч, заданный неравенством ≥ 3, на координатной прямой. Для этого отметим на ней точку с координатой 3, а всю оставшуюся справа от неё область выделим штрихами. Выделяется именно правая часть, поскольку решениями неравенства ≥ 3 являются числа, бóльшие 3. А бóльшие числа на координатной прямой располагаются правее

числовой промежуток от 2 до бесконечности

Здесь точка 3 соответствует границе неравенства ≥ 3, а выделенная штрихами область соответствует множеству значений x, которые являются решениями неравенства ≥ 3.

Точка 3, являющаяся границей числового луча, изображена в виде закрашенного кружка, поскольку граница неравенства ≥ 3 принадлежит множеству его решений.

На письме числовой луч, заданный неравенством x ≥ a, обозначается следующим образом:

[ ; +∞ )

Видно, что с одной стороны граница обрамлена квадратной скобкой, а с другой круглой. Это связано с тем, что одна граница числового луча принадлежит ему, а другая нет, поскольку бесконечность сама по себе границ не имеет и подразумевается, что по ту сторону нет числа, замыкающего этот числовой луч.

Учитывая то, что одна из границ числового луча закрыта, данный промежуток часто называют закрытым числовым лучом.

Запишем ответ к неравенству ≥ 3 с помощью обозначения числового луча. У нас переменная a равна 3

x ∈  [ 3 ; +∞ )

В этом выражении говорится, что переменная x, входящая в неравенство ≥ 3, принимает все значения от 3 до плюс бесконечности.

Иначе говоря, все числа от 3 до плюс бесконечности, являются решениями неравенства ≥ 3. Граница 3 принадлежит множеству решений, поскольку неравенство ≥ 3 является нестрогим.

Закрытым числовым лучом также называют числовой промежуток, который задаётся неравенством x ≤ a. Решениями неравенства x ≤ a являются все числа, которые меньше a, включая само число a

К примеру, если = 2, то неравенство примет вид ≤ 2. На координатной прямой граница 2 будет изображаться закрашенным кружком, а вся область, находящаяся слева, будет выделена штрихами. В этот раз выделяется левая часть, поскольку решениями неравенства ≤ 2 являются числа, меньшие 2. А меньшие числа на координатной прямой располагаются левее

числовой промежуток от минус бесконечности до 2

Здесь точка 2 соответствует границе неравенства ≤ 2, а выделенная штрихами область соответствует множеству значений x, которые являются решениями неравенства ≤ 2.

Точка 2, являющаяся границей числового луча, изображена в виде закрашенного кружка, поскольку граница неравенства ≤ 2 принадлежит множеству его решений.

Запишем ответ к неравенству ≤ 2 с помощью обозначения числового луча:

x ∈  ( −∞ ; 2 ]

В этом выражении говорится, что все числа от минус бесконечности до 2, являются решениями неравенства ≤ 2. Граница 2 принадлежит множеству решений, поскольку неравенство ≤ 2 является нестрогим.

Открытый числовой луч

Открытым числовым лучом называют числовой промежуток, который задаётся неравенством x > a, где a — граница данного неравенства, x — решение неравенства.

Открытый числовой луч во многом похож на закрытый числовой луч. Различие в том, что граница a не принадлежит промежутку, как и граница неравенства x > a не принадлежит множеству его решений.

Пусть = 3. Тогда неравенство примет вид > 3. Решениями данного неравенства являются все числа, которые больше 3, за исключением числа 3

На координатной прямой граница открытого числового луча, заданного неравенством > 3, будет изображаться в виде пустого кружка. Вся область, находящаяся справа, будет выделена штрихами:

числовой луч от 3 до бесконечности

Здесь точка 3 соответствует границе неравенства x > 3, а выделенная штрихами область соответствует множеству значений x, которые являются решениями неравенства x > 3. Точка 3, являющаяся границей открытого числового луча, изображена в виде пустого кружка, поскольку граница неравенства x > 3 не принадлежит множеству его решений.

На письме открытый числовой луч, заданный неравенством x > a, обозначается следующим образом:

( ; +∞ )

Круглые скобки указывают на то, что границы открытого числового луча не принадлежат ему.

Запишем ответ к неравенству x > 3 с помощью обозначения открытого числового луча:

x ∈  ( 3 ; +∞ )

В этом выражении говорится, что все числа от 3 до плюс бесконечности, являются решениями неравенства x > 3. Граница 3 не принадлежит множеству решений, поскольку неравенство x > 3 является строгим.

Открытым числовым лучом также называют числовой промежуток, который задаётся неравенством x < a, где a — граница данного неравенства, x — решение неравенства. Решениями неравенства x < a являются все числа, которые меньше a, исключая число a

К примеру, если = 2, то неравенство примет вид x < 2. На координатной прямой граница 2 будет изображаться пустым кружком, а вся область, находящаяся слева, будет выделена штрихами:

числовой промежуток от минус бесконечности до 2 открытый числовой луч

Здесь точка 2 соответствует границе неравенства x < 2, а выделенная штрихами область соответствует множеству значений x, которые являются решениями неравенства x < 2. Точка 2, являющаяся границей открытого числового луча, изображена в виде пустого кружка, поскольку граница неравенства x < 2 не принадлежит множеству его решений.

На письме открытый числовой луч, заданный неравенством x < a, обозначается следующим образом:

( −∞ ; a )

Запишем ответ к неравенству x < 2 с помощью обозначения открытого числового луча:

x ∈  ( −∞ ; 2 )

В этом выражении говорится, что все числа от минус бесконечности до 2, являются решениями неравенства x < 2. Граница 2 не принадлежит множеству решений, поскольку неравенство x < является строгим.

Отрезок

Отрезком называют числовой промежуток, который задаётся двойным неравенством a ≤ x ≤ b, где a и b — границы данного неравенства, x — решение неравенства.

Пусть a = 2, b = 8. Тогда неравенство a ≤ x ≤ b примет вид 2 ≤ ≤ 8. Решениями неравенства 2 ≤ ≤ 8 являются все числа, которые больше 2 и меньше 8. При этом границы неравенства 2 и 8 принадлежат множеству его решений, поскольку неравенство 2 ≤ ≤ 8 является нестрогим.

Изобразим отрезок, заданный двойным неравенством 2 ≤ ≤ 8 на координатной прямой. Для этого отметим на ней точки с координатами 2 и 8, а располагающуюся между ними область выделим штрихами:

числовой промежуток от 2 до 8

Здесь точки 2 и 8 соответствуют границам неравенства 2 ≤ ≤ 8, а выделенная штрихами область соответствует множеству значений x, которые являются решениями неравенства 2 ≤ ≤ 8. Точки 2 и 8, являющиеся границами отрезка, изображены в виде закрашенных кружков, поскольку границы неравенства 2 ≤ ≤ 8 принадлежат множеству его решений.

На письме отрезок, заданный неравенством a ≤ x ≤ b обозначается следующим образом:

[ a ; b ]

Квадратные скобки с обеих сторон указывают на то, что границы отрезка принадлежат ему. Запишем ответ к неравенству 2 ≤ ≤ 8 с помощью этого обозначения:

x ∈  [ 2 ; 8 ]

В этом выражении говорится, что все числа от 2 до 8 включительно, являются решениями неравенства 2 ≤ ≤ 8.

Интервал

Интервалом называют числовой промежуток, который задаётся двойным неравенством a < x < b, где a и b — границы данного неравенства, x — решение неравенства.

Пусть a = 2, b = 8. Тогда неравенство a < x < b примет вид 2 < < 8. Решениями этого двойного неравенства являются все числа, которые больше 2 и меньше 8, исключая числа 2 и 8.

Изобразим интервал на координатной прямой:

числовой промежуток от 2 до 8 интервал

Здесь точки 2 и 8 соответствуют границам неравенства 2 < < 8, а выделенная штрихами область соответствует множеству значений x, которые являются решениями неравенства 2 < < 8. Точки 2 и 8, являющиеся границами интервала, изображены в виде пустых кружков, поскольку границы неравенства 2 < < 8 не принадлежат множеству его решений.

На письме интервал, заданный неравенством a < x < b, обозначается следующим образом:

( a ; b )

Круглые скобки с обеих сторон указывают на то, что границы интервала не принадлежат ему. Запишем ответ к неравенству 2 < < 8 с помощью этого обозначения:

x ∈  ( 2 ; 8 )

В этом выражении говорится, что все числа от 2 до 8, исключая числа 2 и 8, являются решениями неравенства 2 < < 8.

Полуинтервал

Полуинтервалом называют числовой промежуток, который задаётся неравенством a ≤ x < b, где a и b — границы данного неравенства, x — решение неравенства.

Полуинтервалом также называют числовой промежуток, который задаётся неравенством a < x ≤ b.

Одна из границ полуинтервала принадлежит ему. Отсюда и название этого числового промежутка.

В ситуации с полуинтервалом a ≤ x < b ему (полуинтервалу) принадлежит левая граница.

А в ситуации с полуинтервалом a < x ≤ b ему принадлежит правая граница.

Пусть = 2, = 8. Тогда неравенство a ≤ x < b примет вид 2 ≤ x < 8. Решениями этого двойного неравенства являются все числа, которые больше 2 и меньше 8, включая число 2, но исключая число 8.

Изобразим полуинтервал 2 ≤ x < 8 на координатной прямой:

числовой промежуток от 2 до 8 полуинтервал 1

Здесь точки 2 и 8 соответствуют границам неравенства 2 ≤ x < 8, а выделенная штрихами область соответствует множеству значений x, которые являются решениями неравенства 2 ≤ x < 8.

Точка 2, являющаяся левой границей полуинтервала, изображена в виде закрашенного кружка, поскольку левая граница неравенства 2 ≤ x < 8 принадлежит множеству его решений.

А точка 8, являющаяся правой границей полуинтервала, изображена в виде пустого кружка, поскольку правая граница неравенства 2 ≤ x < 8 не принадлежит множеству его решений.

На письме полуинтервал, заданный неравенством a ≤ x < b, обозначается следующим образом:

a ; b )

Видно, что с одной стороны граница обрамлена квадратной скобкой, а с другой круглой. Это связано с тем, что одна граница полуинтервала принадлежит ему, а другая нет. Запишем ответ к неравенству 2 ≤ x < 8 с помощью этого обозначения:

x ∈  [ 2 ; 8 )

В этом выражении говорится, что все числа от 2 до 8, включая число 2, но исключая число 8, являются решениями неравенства 2 ≤ x < 8.

Аналогично на координатной прямой можно изобразить полуинтервал, заданный неравенством a < x ≤ b. Пусть = 2, = 8. Тогда неравенство a < x ≤ b примет вид 2 < ≤ 8. Решениями этого двойного неравенства являются все числа, которые больше 2 и меньше 8, исключая число 2, но включая число 8.

Изобразим полуинтервал 2 < ≤ 8 на координатной прямой:

числовой промежуток от 2 до 8 полуинтервал 2

Здесь точки 2 и 8 соответствуют границам неравенства 2 < ≤ 8, а выделенная штрихами область соответствует множеству значений x, которые являются решениями неравенства 2 < ≤ 8.

Точка 2, являющаяся левой границей полуинтервала, изображена в виде пустого кружка, поскольку левая граница неравенства 2 < ≤ 8 не принадлежит множеству его решений.

А точка 8, являющаяся правой границей полуинтервала, изображена в виде закрашенного кружка, поскольку правая граница неравенства 2 < ≤ 8 принадлежит множеству его решений.

На письме полуинтервал, заданный неравенством a < x ≤ b, обозначается так: a ; b ]. Запишем ответ к неравенству 2 < ≤ 8 с помощью этого обозначения:

x ∈  ( 2 ; 8 ]

В этом выражении говорится, что все числа от 2 до 8, исключая число 2, но включая число 8, являются решениями неравенства 2 < ≤ 8.


Изображение числовых промежутков на координатной прямой

Числовой промежуток может быть задан с помощью неравенства или с помощью обозначения (круглых или квадратных скобок). В обоих случаях нужно суметь изобразить этот числовой промежуток на координатной прямой. Рассмотрим несколько примеров.

Пример 1. Изобразить числовой промежуток, заданный неравенством > 5

Вспоминаем, что неравенством вида a задаётся открытый числовой луч. В данном случае переменная a равна 5. Неравенство > 5 строгое, поэтому граница 5 будет изображаться в виде пустого кружкá. Нас интересуют все значения x, которые больше 5, поэтому вся область справа будет выделена штрихами:

числовой луч от 5 до бесконечности


Пример 2. Изобразить числовой промежуток (5; +∞) на координатной прямой

Это тот же числовой промежуток, который мы изобразили в предыдущем примере. Но в этот раз он задан не с помощью неравенства, а с помощью обозначения числового промежутка.

Граница 5 обрамлена круглой скобкой, значит она не принадлежит промежутку. Соответственно, кружок остаётся пустым.

Символ +∞ указывает, что нас интересуют все числа, которые больше 5. Соответственно, вся область справа от границы 5 выделяется штрихами:

числовой луч от 5 до бесконечности 2


Пример 3. Изобразить числовой промежуток (−5; 1) на координатной прямой.

Круглыми скобками с обеих сторон обозначаются интервалы. Границы интервала не принадлежат ему, поэтому границы −5 и 1 будут изображаться на координатной прямой в виде пустых кружков. Вся область между ними будет выделена штрихами:

числовой промежуток от -5 до 1 рисунок


Пример 4. Изобразить числовой промежуток, заданный неравенством −5 < x < 1

Это тот же числовой промежуток, который мы изобразили в предыдущем примере. Но в этот раз он задан не с помощью обозначения промежутка, а с помощью двойного неравенства.

Неравенством вида a < x < b, задаётся интервал. В данном случае переменная a равна −5, а переменная b равна единице. Неравенство −5 < x < 1 строгое, поэтому границы −5 и 1 будут изображаться в виде пустых кружка. Нас интересуют все значения x, которые больше −5, но меньше единицы, поэтому вся область между точками −5 и 1 будет выделена штрихами:

числовой промежуток от -5 до 1 рисунок


Пример 5. Изобразить на координатной прямой числовые промежутки [-1; 2] и [2; 5]

В этот раз изобразим на координатной прямой сразу два промежутка.

Квадратными скобками с обеих сторон обозначаются отрезки. Границы отрезка принадлежат ему, поэтому границы отрезков [-1; 2] и [2; 5] будут изображаться на координатной прямой в виде закрашенных кружков. Вся область между ними будет выделена штрихами.

Чтобы хорошо увидеть промежутки [−1; 2] и [2; 5], первый можно изобразить на верхней области, а второй на нижней. Так и поступим:

-1 2 i 2 5 на кп


Пример 6. Изобразить на координатной прямой числовые промежутки [-1; 2) и (2; 5]

Квадратной скобкой с одной стороны и круглой с другой обозначаются полуинтервалы. Одна из границ полуинтервала принадлежат ему, а другая нет.

В случае с полуинтервалом [-1; 2) левая граница будет принадлежать ему, а правая нет. Значит левая граница будет изображаться в виде закрашенного кружка. Правая же граница будет изображаться в виде пустого кружка.

А в случае с полуинтервалом (2; 5] ему будет принадлежать только правая граница, а левая нет. Значит левая граница будет изображаться в виде закрашенного кружка. Правая же граница будет изображаться в виде пустого кружка.

Изобразим промежуток [-1; 2) на верхней области координатной прямой, а промежуток (2; 5] — на нижней:

-1 2 i 2 5 на кп одна граница открыта


Примеры решения неравенств

Неравенство, которое путём тождественных преобразований можно привести к виду ax > b (или к виду ax < b), будем называть линейным неравенством с одной переменной.

В линейном неравенстве ax > b, x — это переменная, значения которой нужно найти, а — коэффициент этой переменной, b — граница неравенства, которая в зависимости от знака неравенства может принадлежать множеству его решений либо не принадлежать ему.

Например, неравенство 2> 4 является неравенством вида ax > b. В нём роль переменной a играет число 2, роль переменной b (границы неравенства) играет число 4.

Неравенство 2> 4 можно сделать ещё проще. Если мы разделим обе его части на 2, то получим неравенство > 2

Получившееся неравенство > 2 также является неравенством вида ax > b, то есть линейным неравенством с одной переменной. В этом неравенстве роль переменной a играет единица. Ранее мы говорили, что коэффициент 1 не записывают. Роль переменной b играет число 2.

Отталкиваясь от этих сведений, попробуем решить несколько простых неравенств. В ходе решения мы будем выполнять элементарные тождественные преобразования с целью получить неравенство вида ax > b

Пример 1. Решить неравенство − 7 < 0

Прибавим к обеим частям неравенства число 7

− 7 + 7 < 0 + 7

В левой части останется x, а правая часть станет равна 7

< 7

Путём элементарных преобразований мы привели неравенство − 7 < 0 к равносильному неравенству < 7. Решениями неравенства < 7 являются все числа, которые меньше 7. Граница 7 не принадлежит множеству решений, поскольку неравенство строгое.

Когда неравенство приведено к виду x < a (или x > a), его можно считать уже решённым. Наше неравенство − 7 < 0 тоже приведено к такому виду, а именно к виду < 7. Но в большинстве школ требуют, чтобы ответ был записан с помощью числового промежутка и проиллюстрирован на координатной прямой.

Запишем ответ с помощью числового промежутка. В данном случае ответом будет открытый числовой луч (вспоминаем, что числовой луч задаётся неравенством x < a и обозначается как ( −∞ ; a)

x ∈  ( −∞ ; 7 )

На координатной прямой граница 7 будет изображаться в виде пустого кружка, а вся область, находящаяся слева от границы, будет выделена штрихами:

числовой промежуток от минус бесконечности до 7 открытый числовой луч

Для проверки возьмём любое число из промежутка ( −∞ ; 7 ) и подставим его в неравенство < 7 вместо переменной x. Возьмём, например, число 2

2 < 7

Получилось верное числовое неравенство, значит и решение верное. Возьмём ещё какое-нибудь число, например, число 4

4 < 7

Получилось верное числовое неравенство. Значит решение верное.

А поскольку неравенство < 7 равносильно исходному неравенству x − 7 < 0, то решения неравенства < 7 будут совпадать с решениями неравенства x − 7 < 0. Подставим те же тестовые значения 2 и 4 в неравенство x − 7 < 0

2 − 7 < 0

−5 < 0 — Верное неравенство

4 − 7 < 0

−3 < 0 Верное неравенство


Пример 2. Решить неравенство −4x < −16

Разделим обе части неравенства на −4. Не забываем, что при делении обеих частей неравенства на отрицательное число, знак неравенства меняется на противоположный:

-4x меньге -16 шаг 1

Мы привели неравенство −4x < −16 к равносильному неравенству > 4. Решениями неравенства > 4 будут все числа, которые больше 4. Граница 4 не принадлежит множеству решений, поскольку неравенство строгое.

Изобразим множество решений неравенства > 4 на координатной прямой и запишем ответ в виде числового промежутка:

числовой луч от 4 до бесконечности

промежуток от 4 до бесконечности


Пример 3. Решить неравенство 3y + 1 > 1 + 6y

Перенесём 6y из правой части в левую часть, изменив знак. А 1 из левой части перенесем в правую часть, опять же изменив знак:

3− 6y> 1 − 1

Приведём подобные слагаемые:

−3y > 0

Разделим обе части на −3. Не забываем, что при делении обеих частей неравенства на отрицательное число, знак неравенства меняется на противоположный:

3y na 3 b 0

Решениями неравенства < 0 являются все числа, меньшие нуля. Изобразим множество решений неравенства < 0 на координатной прямой и запишем ответ в виде числового промежутка:

числовой луч от минус бесконечности до нуля

промежуток от бесконечности до 0


Пример 4. Решить неравенство 5(− 1) + 7 ≤ 1 − 3(+ 2)

Раскроем скобки в обеих частях неравенства:

нер-во 5x-5 -7 1-3x-6 шаг 1

Перенесем −3x из правой части в левую часть, изменив знак. Члены −5 и 7 из левой части перенесем в правую часть, опять же изменив знаки:

нер-во 5x-5 -7 1-3x-6 шаг 2

Приведем подобные слагаемые:

нер-во 5x-5 -7 1-3x-6 шаг 3

Разделим обе части получившегося неравенства на 8

нер-во 5x-5 -7 1-3x-6 шаг 4

Решениями неравенства нер-во 5x-5 -7 1-3x-6 шаг 5 являются все числа, которые меньше минус 7 na 8. Граница минус 7 na 8 принадлежит множеству решений, поскольку неравенство нер-во 5x-5 -7 1-3x-6 шаг 5 является нестрогим.

Изобразим множество решений неравенства нер-во 5x-5 -7 1-3x-6 шаг 5 на координатной прямой и запишем ответ в виде числового промежутка:

числовой промежуток от минус бесконечности до 7 8

промежуток от бесконечности до 7 8

 


Пример 5. Решить неравенство 5 plus 6x na 2 more 3

Умножим обе части неравенства на 2. Это позволит избавиться от дроби в левой части:

5 plus 6x na 2 more 3 ste 2

Теперь перенесем 5 из левой части в правую часть, изменив знак:

5 plus 6x na 2 more 3 step 3

После приведения подобных слагаемых, получим неравенство 6> 1. Разделим обе части этого неравенства на 6. Тогда получим:

5 plus 6x na 2 more 3 step 4

Решениями неравенства x more 1 na 6 являются все числа, которые больше одна шестая. Граница одна шестая не принадлежит множеству решений, поскольку неравенство x more 1 na 6 является строгим.

Изобразим множество решений неравенства x more 1 na 6 на координатной прямой и запишем ответ в виде числового промежутка:

числовой луч от минус бесконечности до 1 na 6

числовой луч 1 na 6 до плюс бесконечности


Пример 6. Решить неравенство x na 2 plus x na 3 less 5

Умножим обе части на 6

x na 2 plus x na 3 less 5 step 2

После приведения подобных слагаемых, получим неравенство 5< 30. Разделим обе части этого неравенства на 5

x na 2 plus x na 3 less 5 step 3

Решениями неравенства < 6 являются все числа, которые меньше 6. Граница 6 не принадлежит множеству решений, поскольку неравенство является < 6 строгим.

Изобразим множество решений неравенства < 6 на координатной прямой и запишем ответ в виде числового промежутка:

числовой луч от минус бесконечности до 6

промежуток от минус бесконечности до 6


Пример 7. Решить неравенство x minus x minus 3 na 5 plus 2x minus 1 na 10 less ravno 4

Умножим обе части неравенства на 10

x minus x minus 3 na 5 plus 2x minus 1 na 10 less ravno 4 step 2

В получившемся неравенстве раскроем скобки в левой части:

x minus x minus 3 na 5 plus 2x minus 1 na 10 less ravno 4 step 3

Перенесем члены без x в правую часть

x minus x minus 3 na 5 plus 2x minus 1 na 10 less ravno 4 step 4

Приведем подобные слагаемые в обеих частях:

x minus x minus 3 na 5 plus 2x minus 1 na 10 less ravno 4 step 5

Разделим обе части получившегося неравенства на 10

x minus x minus 3 na 5 plus 2x minus 1 na 10 less ravno 4 step 6

Решениями неравенства ≤ 3,5 являются все числа, которые меньше 3,5. Граница 3,5 принадлежит множеству решений, поскольку неравенство является ≤ 3,5 нестрогим.

Изобразим множество решений неравенства ≤ 3,5 на координатной прямой и запишем ответ в виде числового промежутка:

числовой луч от минус бесконечности до 35 na 10


Пример 8. Решить неравенство 4 < 4< 20

Чтобы решить такое неравенство, нужно переменную x освободить от коэффициента 4. Тогда мы сможем сказать в каком промежутке находится решение данного неравенства.

Чтобы освободить переменную x от коэффициента, можно разделить член 4x на 4. Но правило в неравенствах таково, что если мы делим член неравенства на какое-нибудь число, то тоже самое надо сделать и с остальными членами, входящими в данное неравенство. В нашем случае на 4 нужно разделить все три члена неравенства 4 < 4< 20

4x bolshe 4 i menshe 20

Решениями неравенства 1 < < 5 являются все числа, которые больше 1 и меньше 5. Границы 1 и 5 не принадлежат множеству решений, поскольку неравенство 1 < < 5 является строгим.

Изобразим множество решений неравенства 1 < < 5 на координатной прямой и запишем ответ в виде числового промежутка:

интервал от 1 до 5

промежуток от 1 до 5


Пример 9. Решить неравенство −1 ≤ 2≤ 0

Разделим все члены неравенства на −2

-1 m r -2x m r 0 step 1

Получили неравенство 0,5 ≥ ≥ 0. Двойное неравенство желательно записывать так, чтобы меньший член располагался слева, а больший справа. Поэтому перепишем наше неравенство следующим образом:

0 ≤ ≤ 0,5

Решениями неравенства 0 ≤ ≤ 0,5 являются все числа, которые больше 0 и меньше 0,5. Границы 0 и 0,5 принадлежат множеству решений, поскольку неравенство 0 ≤ ≤ 0,5 является нестрогим.

Изобразим множество решений неравенства 0 ≤ ≤ 0,5 на координатной прямой и запишем ответ в виде числового промежутка:

числовой промежуток от 0 до 05

промежуток от 0 до 05


Пример 10. Решить неравенство x minus 1-x na 6 m r 2x plus 1 na 2 step 1

Умножим обе неравенства на 12

x minus 1-x na 6 m r 2x plus 1 na 2 step 2

Раскроем скобки в получившемся неравенстве и приведем подобные слагаемые:

x minus 1-x na 6 m r 2x plus 1 na 2 step 3

Разделим обе части получившегося неравенства на 2

x minus 1-x na 6 m r 2x plus 1 na 2 step 4

Решениями неравенства ≤ −0,5 являются все числа, которые меньше −0,5. Граница −0,5 принадлежит множеству решений, поскольку неравенство ≤ −0,5 является нестрогим.

Изобразим множество решений неравенства ≤ −0,5 на координатной прямой и запишем ответ в виде числового промежутка:

числовой луч от минус бесконечности до -05

промежуток от минус бесконечности до -05


Пример 11. Решить неравенство -1 m r 6 - a m r 1 пример

Умножим все части неравенства на 3

Теперь из каждой части получившегося неравенства вычтем 6

-1 m r 6 - a m r 1 шаг 3

Каждую часть получившегося неравенства разделим на −1. Не забываем, что при делении всех частей неравенства на отрицательное число, знак неравенства меняется на противоположный:

-1 m r 6 - a m r 1 шаг 4

Решениями неравенства 3 ≤ a ≤ 9 являются все числа, которые больше 3 и меньше 9. Границы 3 и 9 принадлежат множеству решений, поскольку неравенство 3 ≤ a ≤ 9 является нестрогим.

Изобразим множество решений неравенства 3 ≤ a ≤ 9 на координатной прямой и запишем ответ в виде числового промежутка:

отрезок от 3 до 9

промежуток от 3 до 9


Когда решений нет

Существуют неравенства, которые не имеют решений. Таковым, например, является неравенство 6> 2(3+ 1). В процессе решения этого неравенства мы придём к тому, что знак неравенства > не оправдает своего местоположения. Давайте посмотрим, как это выглядит.

Раскроем скобки в правой части данного неравенство, получим 6> 6+ 2. Перенесем 6x из правой части в левую часть, изменив знак, получим 6− 6> 2. Приводим подобные слагаемые и получаем неравенство 0 > 2, которое не является верным.

Для наилучшего понимания, перепишем приведение подобных слагаемых в левой части следующим образом:

0x b 2

Получили неравенство 0> 2. В левой части располагается произведение, которое будет равно нулю при любом x. А ноль не может быть больше, чем число 2. Значит неравенство 0> 2 не имеет решений.

А если не имеет решений приведённое равносильное неравенство 0> 2, то не имеет решений и исходное неравенство 6> 2(3+ 1).


Пример 2. Решить неравенство 12x - 1 na 3 m 4x -3 step 1

Умножим обе части неравенства на 3

12x - 1 na 3 m 4x -3 step 2

В получившемся неравенстве перенесем член 12x из правой части в левую часть, изменив знак. Затем приведём подобные слагаемые:

12x - 1 na 3 m 4x -3 step 312x - 1 na 3 m 4x -3 step 312x - 1 na 3 m 4x -3 step 312x - 1 na 3 m 4x -3 step 3

Правая часть получившегося неравенства при любом x будет равна нулю. А ноль не меньше, чем −8. Значит неравенство 0< −8 не имеет решений.

А если не имеет решений приведённое равносильное неравенство 0< −8, то не имеет решений и исходное неравенство 12x - 1 na 3 m 4x -3 step 1.

Ответ: решений нет.


Когда решений бесконечно много

Существуют неравенства, имеющие бесчисленное множество решений. Такие неравенства становятся верными при любом x.

Пример 1. Решить неравенство 5(3− 9) < 15x

Раскроем скобки в правой части неравенства:

15x - 45 m 15x step 1

Перенесём 15x из правой части в левую часть, изменив знак:

15x - 45 m 15x step 2

Приведем подобные слагаемые в левой части:

15x - 45 m 15x step 4

Получили неравенство 0x < 45. В левой части располагается произведение, которое будет равно нулю при любом x. А ноль меньше, чем 45. Значит решением неравенства 0x < 45 является любое число.

А если приведённое равносильное неравенство 0x < 45 имеет бесчисленное множество решений, то и исходное неравенство 5(3− 9) < 15x имеет те же решения.

Ответ можно записать в виде числового промежутка:

x ∈ ( −∞; +∞ )

В этом выражении говорится, что решениями неравенства 5(3− 9) < 15x являются все числа от минус бесконечности до плюс бесконечности.


Пример 2. Решить неравенство: 31(2+ 1) − 12> 50x

Раскроем скобки в левой части неравенства:

62x plus 31 - 12x b 50x step 1

Перенесём 50x из правой части в левую часть, изменив знак. А член 31 из левой части перенесём в правую часть, опять же изменив знак:

62x plus 31 - 12x b 50x step 2

Приведём подобные слагаемые:

62x plus 31 - 12x b 50x step 3

Получили неравенство 0x > −31. В левой части располагается произведение, которое будет равно нулю при любом x. А ноль больше, чем −31. Значит решением неравенства 0x < −31 является любое число.

А если приведённое равносильное неравенство 0x > −31 имеет бесчисленное множество решений, то и исходное неравенство 31(2+ 1) − 12> 50x имеет те же решения.

Запишем ответ в виде числового промежутка:

x ∈ ( −∞; +∞ )


Задания для самостоятельного решения

Задание 1. Решите неравенство:
Решение:


Задание 2. Решите неравенство:
Решение:


Задание 3. Решите неравенство:
Решение:


Задание 4. Решите неравенство:
Решение:


Задание 5. Решите неравенство:
Решение:


Задание 6. Решите неравенство:
Решение:


Задание 7. Решите неравенство:
Решение:


Задание 8. Решите неравенство:
Решение:


Задание 9. Решите неравенство:
Решение:


Задание 10. Решите неравенство:
Решение:


Задание 11. Решите неравенство:
Решение:


Задание 12. Решите неравенство:
Решение:



Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Системы линейных уравнений

Линейные уравнения с двумя переменными

У школьника имеется 200 рублей, чтобы пообедать в школе. Пирожное стоит 25 рублей, а чашка кофе 10 рублей. Сколько пирожных и чашек кофе можно накупить на 200 рублей?

Обозначим количество пирожных через x, а количество чашек кофе через y. Тогда стоимость пирожных будет обозначаться через выражение 25x, а стоимость чашек кофе через 10y.

25x — стоимость x пирожных
10y — стоимость y чашек кофе

Итоговая сумма должна равняться 200 рублей. Тогда получится уравнение с двумя переменными x и y

25+ 10= 200

Сколько корней имеет данное уравнение?

Всё зависит от аппетита школьника. Если он купит 6 пирожных и 5 чашек кофе, то корнями уравнения будут числа 6 и 5.

pri x ravno 6 y ravno 5 25x plus 10y ravno 200

Говорят, что пара значений 6 и 5 являются корнями уравнения 25+ 10= 200. Записывается как (6; 5), при этом первое число является значением переменной x, а второе — значением переменной y.

6 и 5 не единственные корни, которые обращают уравнение 25+ 10= 200 в тождество. При желании на те же 200 рублей школьник может купить 4 пирожных и 10 чашек кофе:

pri x ravno 4 y ravno 10 25x plus 10y ravno 200

В этом случае корнями уравнения 25+ 10= 200 является пара значений (4; 10).

Более того, школьник может вообще не покупать кофе, а купить пирожные на все 200 рублей. Тогда корнями уравнения 25+ 10= 200 будут значения 8 и 0

pri x ravno 8 y ravno 0 25x plus 10y ravno 200

Или наоборот, не покупать пирожные, а купить кофе на все 200 рублей. Тогда корнями уравнения 25+ 10= 200 будут значения 0 и 20

pri x ravno 0 y ravno 20 25x plus 10y ravno 200

Попробуем перечислить все возможные корни уравнения 25+ 10= 200. Условимся, что значения x и y принадлежат множеству целых чисел. И пусть эти значения будут бóльшими или равными нулю:

 Z, y Z;
x ≥
0, y ≥ 0

Так будет удобно и самому школьнику. Пирожные удобнее покупать целыми, чем к примеру несколько целых пирожных и половину пирожного. Кофе также удобнее брать целыми чашками, чем к примеру несколько целых чашек и половину чашки.

Заметим, что при нечетном x невозможно достичь равенства ни при каком y. Тогда значениями x будут следующие числа 0, 2, 4, 6, 8. А зная x можно без труда определить y

нахождение второго корня 25x plus 10y ravno 200

Таким образом, мы получили следующие пары значений (0; 20), (2; 15), (4; 10), (6; 5), (8; 0). Эти пары являются решениями или корнями уравнения 25+ 10= 200. Они обращают данное уравнение в тождество.

Уравнение вида ax + by = c называют линейным уравнением с двумя переменными. Решением или корнями этого уравнения называют пару значений (x; y), которая обращает его в тождество.

Отметим также, что если линейное уравнение с двумя переменными записано в виде ax + by = c, то говорят, что оно записано в каноническом (нормальном) виде.

Некоторые линейные уравнения с двумя переменными могут быть приведены к каноническому виду.

Например, уравнение 2(16+ 3y − 4) = 2(12 + 8x − y) можно привести к виду ax + by = c. Раскроем скобки в обеих частях этого уравнения, получим 32x + 6y − 8 = 24 + 16x − 2y. Слагаемые, содержащие неизвестные сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой. Тогда получим 32x − 16+ 6+ 2y = 24 + 8. Приведём подобные слагаемые в обеих частях, получим уравнение 16+ 8= 32. Это уравнение приведено к виду ax + by = c и является каноническим.

Рассмотренное ранее уравнение 25+ 10= 200 также является линейным уравнением с двумя переменными в каноническом виде. В этом уравнении параметры a, b и c равны значениям 25, 10 и 200 соответственно.

На самом деле уравнение ax + by = c имеет бесчисленное множество решений. Решая уравнение 25+ 10= 200, мы искали его корни только на множестве целых чисел. В результате получили несколько пар значений, которые обращали данное уравнение в тождество. Но на множестве рациональных чисел уравнение 25+ 10= 200 будет иметь бесчисленное множество решений.

Для получения новых пар значений, нужно взять произвольное значение для x, затем выразить y. К примеру, возьмем для переменной x значение 7. Тогда получим уравнение с одной переменной 25 × 7 + 10= 200 в котором можно выразить y

25на7 plus 10y ravno 200 решение

Пусть x = 15. Тогда уравнение 25+ 10= 200 примет вид 25 × 15 + 10= 200. Отсюда находим, что y = −17,5

25на15 plus 10y ravno 200 решение

Пусть x = −3. Тогда уравнение 25+ 10= 200 примет вид 25 × (−3) + 10= 200. Отсюда находим, что y = −27,5

25на-3 plus 10y ravno 200 решение


Система двух линейных уравнений с двумя переменными

Для уравнения ax + by = c можно сколько угодно раз брать произвольные значение для x и находить значения для y. Отдельно взятое такое уравнение будет иметь бесчисленное множество решений.

Но бывает и так, что переменные x и y связаны не одним, а двумя уравнениями. В этом случае они образуют так называемую систему линейных уравнений с двумя переменными. Такая система уравнений может иметь одну пару значений (или по-другому: «одно решение»).

Может случиться и так, что система вовсе не имеет решений. Бесчисленное множество решений система линейных уравнений может иметь в редких и в исключительных случаях.

Два линейных уравнения образуют систему тогда, когда значения x и y входят в каждое из этих уравнений.

Вернемся к самому первому уравнению 25+ 10= 200. Одной из пар значений для этого уравнения была пара (6; 5). Это случай, когда на 200 рублей можно можно было купить 6 пирожных и 5 чашек кофе.

Составим задачу так, чтобы пара (6; 5) стала единственным решением для уравнения 25+ 10= 200. Для этого составим ещё одно уравнение, которое связывало бы те же x пирожных и y чашечек кофе.

Поставим текст задачи следующим образом:

«Школьник купил на 200 рублей несколько пирожных и несколько чашек кофе. Пирожное стоит 25 рублей, а чашка кофе 10 рублей. Сколько пирожных и чашек кофе купил школьник, если известно что количество пирожных на одну единицу больше количества чашек кофе?»

Первое уравнение у нас уже есть. Это уравнение 25+ 10= 200. Теперь составим уравнение к условию «количество пирожных на одну единицу больше количества чашек кофе».

Количество пирожных это x, а количество чашек кофе это y. Можно записать эту фразу с помощью уравнения x − y = 1. Это уравнение будет означать, что разница между пирожными и кофе составляет 1.

Либо второе уравнение можно записать как x = y + 1. Это уравнение означает, что количество пирожных на единицу больше, чем количество чашек кофе. Поэтому для получения равенства, к количеству чашек кофе прибавлена единица. Это легко можно понять, если воспользоваться моделью весов, которые мы рассматривали при изучении простейших задач:

весы x пирожных и y чашек кофе

Получили два уравнения: 25+ 10= 200 и x = y + 1. Поскольку значения x и y, а именно 6 и 5 входят в каждое из этих уравнений, то вместе они образуют систему. Запишем эту систему. Если уравнения образуют систему, то они обрамляются знаком системы. Знак системы это фигурная скобка:

system 25x plus 10y step 1

Давайте решим данную систему. Это позволит увидеть, как мы придём к значениям 6 и 5. Существует много методов решения таких систем. Рассмотрим наиболее популярные из них.

Метод подстановки

Название этого метода говорит само за себя. Суть его заключается в том, чтобы одно уравнение подставить в другое, предварительно выразив одну из переменных.

В нашей системе ничего выражать не нужно. Во втором уравнении x = y + 1 переменная x уже выражена. Эта переменная равна выражению + 1. Тогда можно подставить это выражение в первое уравнение вместо переменной x

system 25x plus 10y step 2

После подстановки выражения y + 1 в первое уравнение вместо x, получим уравнение 25(+ 1) + 10= 200. Это линейное уравнение с одной переменной. Такое уравнение решить довольно просто:

system 25x plus 10y step 3

Мы нашли значение переменной y. Теперь подставим это значение в одно из уравнений и найдём значение x. Для этого удобно использовать второе уравнение x = y + 1. В него и подставим значение y

x ravno y plus 1 решение

Значит пара (6; 5) является решением системы уравнений, как мы и задумывали. Выполняем проверку и убеждаемся, что пара (6; 5) удовлетворяет системе:

system 25x plus 10y step 4


Пример 2. Решить методом подстановки следующую систему уравнений:

system x ravno 2 plus y step 1

Подставим первое уравнение = 2 + y во второе уравнение 3x − 2= 9. В первом уравнении переменная x равна выражению 2 + y. Это выражение и подставим во второе уравнение вместо x

system x ravno 2 plus y step 2

Теперь найдём значение x. Для этого подставим значение y в первое уравнение = 2 + y

system x ravno 2 plus y step 3

Значит решением системы system x ravno 2 plus y step 1 является пара значение (5; 3)


Пример 3. Решить методом подстановки следующую систему уравнений:

systemx plus 2y ravno 11 решение

Здесь в отличие от предыдущих примеров, одна из переменных не выражена явно.

Чтобы подставить одно уравнение в другое, сначала нужно выразить одну из переменных.

Выражать желательно ту переменную, которая имеет коэффициент единицу. Коэффициент единицу имеет переменная x, которая содержится в первом уравнении + 2= 11. Эту переменную и выразим.

После выражения переменной x, наша система примет следующий вид:

systemx plus 2y ravno 11 step 2

Теперь подставим первое уравнение во второе и найдем значение y

systemx plus 2y ravno 11 step 3

Подставим y в первое уравнение и найдём x

systemx plus 2y ravno 11 step 4

Значит решением системы systemx plus 2y ravno 11 решение является пара значений (3; 4)

Конечно, выражать можно и переменную y. Корни от этого не изменятся. Но если выразить y, получится не очень-то и простое уравнение, на решение которого уйдет больше времени. Выглядеть это будет следующим образом:

systemx plus 2y ravno 11 step 5

Видим, что в данном примере выражать x намного удобнее, чем выражать y.


Пример 4. Решить методом подстановки следующую систему уравнений:

7x plus 9y ravno 8 step 1

Выразим в первом уравнении x. Тогда система примет вид:

7x plus 9y ravno 8 step 2

Подставим первое уравнение во второе и найдём y

7x plus 9y ravno 8 step 3

Подставим y в первое уравнение и найдём x. Можно воспользоваться изначальным уравнением 7+ 9= 8, либо воспользоваться уравнением 7x plus 9y ravno 8 step 4, в котором выражена переменная x. Этим уравнением и воспользуемся, поскольку это удобно:

7x plus 9y ravno 8 step 5

Значит решением системы 7x plus 9y ravno 8 step 1 является пара значений (5; −3)


Метод сложения

Метод сложения заключается в том, чтобы почленно сложить уравнения, входящие в систему. Это сложение приводит к тому, что образуется новое уравнение с одной переменной. А решить такое уравнение довольно просто.

Решим следующую систему уравнений:

system 2x plus y ravno 24 step 1

Сложим левую часть первого уравнения с левой частью второго уравнения. А правую часть первого уравнения с правой частью второго уравнения. Получим следующее равенство:

system 2x plus y ravno 24 step 2

Приведем подобные слагаемые:

system 2x plus y ravno 24 step 3

В результате получили простейшее уравнение 3= 27 корень которого равен 9. Зная значение x можно найти значение y. Подставим значение x во второе уравнение x − y = 3. Получим 9 − y = 3. Отсюда = 6.

Значит решением системы system 2x plus y ravno 24 step 1 является пара значений (9; 6)


Пример 2. Решить следующую систему уравнений методом сложения:

2x plus ravno 11 step 1

Сложим левую часть первого уравнения с левой частью второго уравнения. А правую часть первого уравнения с правой частью второго уравнения. В получившемся равенстве приведем подобные слагаемые:

2x plus ravno 11 step 2

В результате получили простейшее уравнение 5= 20, корень которого равен 4. Зная значение x можно найти значение y. Подставим значение x в первое уравнение 2x + y = 11. Получим 8 + y = 11. Отсюда = 3.

Значит решением системы 2x plus ravno 11 step 1 является пара значений (4;3)

Процесс сложения подробно не расписывают. Его нужно выполнять в уме. При сложении оба уравнения должны быть приведены к каноническому виду. То есть, к виду ac + by = c.

Из рассмотренных примеров видно, что основная цель сложения уравнений это избавление от одной из переменных. Но не всегда удаётся сразу решить систему уравнений методом сложения. Чаще всего систему предварительно приводят к виду, при котором можно сложить уравнения, входящие в эту систему.

Например, систему 5x plus y ravno 15 step 1 можно сразу решить методом сложения. При сложении обоих уравнений, слагаемые y и −y исчезнут, поскольку их сумма равна нулю. В результате образуется простейшее уравнение 11= 22, корень которого равен 2. Затем можно будет определить y равный 5.

А систему уравнений 2x plus 3y ravno 18 step 1 методом сложения сразу решить нельзя, поскольку это не приведёт к исчезновению одной из переменных. Сложение приведет к тому, что образуется уравнение 8= 28, имеющее бесчисленное множество решений.

Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному. Это правило справедливо и для системы линейных уравнений с двумя переменными. Одно из уравнений (или оба уравнения) можно умножить на какое-нибудь число. В результате получится равносильная система, корни которой будут совпадать с предыдущей.

Вернемся к самой первой системе system 25x plus 10y step 1, которая описывала сколько пирожных и чашек кофе купил школьник. Решением этой системы являлась пара значений (6; 5).

Умножим оба уравнения, входящие в эту систему на какие-нибудь числа. Скажем первое уравнение умножим на 2, а второе на 3

system 25x plus 10y method summ step 1

В результате получили систему system 25x plus 10y method summ step 2
Решением этой системы по-прежнему является пара значений (6; 5)

system 25x plus 10y method summ step 3

Это значит, что уравнения входящие в систему можно привести к виду, пригодному для применения метода сложения.

Вернемся к системе 2x plus 3y ravno 18 step 1, которую мы не смогли решить методом сложения.

Умножим первое уравнение на 6, а второе на −2

2x plus 3y ravno 18 step 2

Тогда получим следующую систему:

2x plus 3y ravno 18 step 3

Сложим уравнения, входящие в эту систему. Сложение компонентов 12x и −12x даст в результате 0, сложение 18y и 4y даст 22y, а сложение 108 и −20 даст 88. Тогда получится уравнение 22y = 88, отсюда y = 4.

Если первое время тяжело складывать уравнения в уме, то можно записывать как складывается левая часть первого уравнения с левой частью второго уравнения, а правая часть первого уравнения с правой частью второго уравнения:

12x plus 18y ravno 108 второе решение

Зная, что значение переменной y равно 4, можно найти значение x. Подставим y в одно из уравнений, например в первое уравнение 2+ 3= 18. Тогда получим уравнение с одной переменной 2+ 12 = 18. Перенесем 12 в правую часть, изменив знак, получим 2= 6, отсюда x = 3.


Пример 4. Решить следующую систему уравнений методом сложения:

x plus 5y ravno 7 step 1

Умножим второе уравнение на −1. Тогда система примет следующий вид:

x plus 5y ravno 7 step 2

Сложим оба уравнения. Сложение компонентов x и −x даст в результате 0, сложение 5y и 3y даст 8y, а сложение 7 и 1 даст 8. В результате получится уравнение 8= 8, корень которого равен 1. Зная, что значение y равно 1, можно найти значение x.

Подставим y в первое уравнение, получим + 5 = 7, отсюда = 2


Пример 5. Решить следующую систему уравнений методом сложения:

6x minus 7y ravno 40 step 1

Желательно, чтобы слагаемые содержащие одинаковые переменные, располагались друг под другом. Поэтому во втором уравнении слагаемые 5y и −2x поменяем местами. В результате система примет вид:

6x minus 7y ravno 40

Умножим второе уравнение на 3. Тогда система примет вид:

6x minus 7y ravno 40 step 4

Теперь сложим оба уравнения. В результате сложения получим уравнение 8= 16, корень которого равен 2.

Подставим y в первое уравнение, получим 6− 14 = 40. Перенесем слагаемое −14 в правую часть, изменив знак, получим 6= 54. Отсюда = 9.


Пример 6. Решить следующую систему уравнений методом сложения:

2xna9 plus yna4 ravno 11 step 1

Избавимся от дробей. Умножим первое уравнение на 36, а второе на 12

2xna9 plus yna4 ravno 11 step 2

В получившейся системе 2xna9 plus yna4 ravno 11 step 3  первое уравнение можно умножить на −5, а второе на 8

2xna9 plus yna4 ravno 11 step 4

Сложим уравнения в получившейся системе. Тогда получим простейшее уравнение −13= −156. Отсюда = 12. Подставим y в первое уравнение и найдем x

2xna9 plus yna4 ravno 11 step 5


Пример 7. Решить следующую систему уравнений методом сложения:

x-y na 4 ravno step 1

Приведем оба уравнения к нормальному виду. Здесь удобно применить правило пропорции в обоих уравнениях. Если в первом уравнении правую часть представить как  1na1 , а правую часть второго уравнения как 3na1, то система примет вид:

x-y na 4 ravno step 2

У нас получилась пропорция. Перемножим её крайние и средние члены. Тогда система примет вид:

x-y na 4 ravno step 3

Первое уравнение умножим на −3, а во втором раскроем скобки:

Теперь сложим оба уравнения. В результате сложения этих уравнений, мы получим равенство, в обеих частях которого будет ноль:

x-y na 4 ravno step 5

Получается, что система x-y na 4 ravno step 1 имеет бесчисленное множество решений.

Но мы не можем просто так взять с неба произвольные значения для x и y. Мы можем указать одно из значений, а другое определится в зависимости от значения, указанного нами. Например, пусть = 2. Подставим это значение в систему:

x-y na 4 ravno step 6

В результате решения одного из уравнений, определится значение для y, которое будет удовлетворять обоим уравнениям:

x-y na 4 ravno step 7

Получившаяся пара значений (2; −2) будет удовлетворять системе:

x-y na 4 ravno step 8

Найдём еще одну пару значений. Пусть = 4. Подставим это значение в систему:

На глаз можно определить, что значение y равно нулю. Тогда получим пару значений (4; 0), которая удовлетворяет нашей системе:

x-y na 4 ravno step 10


Пример 8. Решить следующую систему уравнений методом сложения:

a plus 3 na 2 minus b minus 2 na 3 ravno 2 step 1

Умножим первое уравнение на 6, а второе на 12

a plus 3 na 2 minus b minus 2 na 3 ravno 2 step 2

Перепишем то, что осталось:

a plus 3 na 2 minus b minus 2 na 3 ravno 2 step 3

Раскроем скобки в обоих уравнениях и приведём подобные слагаемые:

a plus 3 na 2 minus b minus 2 na 3 ravno 2 step 4

Первое уравнение умножим на −1. Тогда система примет вид:

a plus 3 na 2 minus b minus 2 na 3 ravno 2 step 5

Теперь сложим оба уравнения. В результате сложения образуется уравнение 6= 48, корень которого равен 8. Подставим b в первое уравнение и найдём a

a plus 3 na 2 minus b minus 2 na 3 ravno 2 step 6


Система линейных уравнений с тремя переменными

В линейное уравнение с тремя переменными входит три переменные с коэффициентами, а также свободный член. В каноническом виде его можно записать следующим образом:

ax + by + cz = d

Данное уравнение имеет бесчисленное множество решений. Придавая двум переменным различные значения, можно найти третье значение. Решением в этом случае является тройка значений (x; y; z) которая обращает уравнение в тождество.

Если переменные x, y, z связаны между собой тремя уравнениями, то образуется система трех линейных уравнений с тремя переменными. Для решения такой системы можно применять те же методы, которые применяются к линейным уравнениям с двумя переменными: метод подстановки и метод сложения.

Пример 1. Решить следующую систему уравнений методом подстановки:

2x plus 3y plus 5z ravno 10 step 1

Выразим в третьем уравнении x. Тогда система примет вид:

2x plus 3y plus 5z ravno 10 step 2

Теперь выполним подстановку. Переменная x равна выражению 3 − 2y − 2z. Подставим это выражение в первое и второе уравнение:

2x plus 3y plus 5z ravno 10 step 3

Раскроем скобки в обоих уравнениях и приведём подобные слагаемые:

2x plus 3y plus 5z ravno 10 step 4

Мы пришли к системе линейных уравнений с двумя переменными. В данном случае удобно применить метод сложения. В результате переменная y исчезнет, и мы сможем найти значение переменной z

2x plus 3y plus 5z ravno 10 step 5

Теперь найдём значение y. Для этого удобно воспользоваться уравнением −= 4. Подставим в него значение z

2x plus 3y plus 5z ravno 10 step 6

Теперь найдём значение x. Для этого удобно воспользоваться уравнением = 3 − 2y − 2z. Подставим в него значения y и z

2x plus 3y plus 5z ravno 10 step 7

Таким образом, тройка значений (3; −2; 2) является решением нашей системы. Проверкой убеждаемся, что эти значения удовлетворяют системе:

2x plus 3y plus 5z ravno 10 step 8


Пример 2. Решить систему методом сложения

5x minus 6y plus 4z ravno 3 step 1

Сложим первое уравнение со вторым, умноженным на −2.

Если второе уравнение умножить на −2, то оно примет вид −6+ 6y − 4z = −4. Теперь сложим его с первым уравнением:

5x minus 6y plus 4z ravno 3 step 3

Видим, что в результате элементарных преобразований, определилось значение переменной x. Оно равно единице.

Вернемся к главной системе. Сложим второе уравнение с третьим, умноженным на −1. Если третье уравнение умножить на −1, то оно примет вид −4x + 5y − 2z = −1. Теперь сложим его со вторым уравнением:

5x minus 6y plus 4z ravno 3 step 4

Получили уравнение x − 2= −1. Подставим в него значение x, которое мы находили ранее. Тогда мы сможем определить значение y

5x minus 6y plus 4z ravno 3 step 5

Теперь нам известны значения x и y. Это позволяет определить значение z. Воспользуемся одним из уравнений, входящим в систему:

5x minus 6y plus 4z ravno 3 step 6

Таким образом, тройка значений (1; 1; 1) является решением нашей системы. Проверкой убеждаемся, что эти значения удовлетворяют системе:

5x minus 6y plus 4z ravno 3 step 7


Задачи на составление систем линейных уравнений

Задача на составление систем уравнений решается путем ввода нескольких переменных. Далее составляются уравнения на основании условий задачи. Из составленных уравнений образуют систему и решают её. Решив систему, необходимо выполнить проверку на то, удовлетворяет ли её решение условиям задачи.

Задача 1. Из города в колхоз выехала машина «Волга». Обратно она возвращалась по другой дороге, которая была на 5 км короче первой. Всего в оба конца машина проехала 35 км. Сколько километров составляет длина каждой дороги?

Решение

Пусть x — длина первой дороги, y — длина второй. Если в оба конца машина проехала 35 км, то первое уравнение можно записать как = 35. Это уравнение описывает сумму длин обеих дорог.

Сказано, что обратно машина возвращалась по дороге которая была короче первой на 5 км. Тогда второе уравнение можно записать как − = 5. Это уравнение показывает, что разница между длинами дорог составляет 5 км.

Либо второе уравнение можно записать как + 5. Этим уравнением и воспользуемся.

Поскольку переменные x и y в обоих уравнениях обозначают одно и то же число, то мы можем образовать из них систему:

x plus y ravno 35 step 1

Решим эту систему каким-нибудь из изученных ранее методов. В данном случае удобно воспользоваться методом подстановки, поскольку во втором уравнении переменная x уже выражена.

Подставим второе уравнение в первое и найдём y

x plus y ravno 35 step 2

Подставим найденное значение y в во второе уравнение + 5 и найдём x

x plus y ravno 35 step 3

Длина первой дороги была обозначена через переменную x. Теперь мы нашли её значение. Переменная x равна 20. Значит длина первой дороги составляет 20 км.

А длина второй дороги была обозначена через y. Значение этой переменной равно 15. Значит длина второй дороги составляет 15 км.

Выполним проверку. Для начала убедимся, что система решена правильно:

x plus y ravno 35 step 4

Теперь проверим удовлетворяет ли решение (20; 15) условиям задачи.

Было сказано, что всего в оба конца машина проехала 35 км. Складываем длины обеих дорог и убеждаемся, что решение (20; 15) удовлетворяет данному условию: 20 км + 15 км = 35 км

Следующее условие: обратно машина возвращалась по другой дороге, которая была на 5 км короче первой. Видим, что решение (20; 15) удовлетворяет и этому условию, поскольку 15 км короче, чем 20 км на 5 км: 20 км − 15 км = 5 км

При составлении системы важно, чтобы переменные обозначали одни и те же числа во всех уравнениях, входящих в эту систему.

Так наша система x plus y ravno 35 step 1 содержит два уравнения. Эти уравнения в свою очередь содержат переменные x и y, которые обозначают одни и те же числа в обоих уравнениях, а именно длины дорог, равных 20 км и 15 км.


Задача 2. На платформу были погружены дубовые и сосновые шпалы, всего 300 шпал. Известно, что все дубовые шпалы весили на 1 т меньше, чем все сосновые. Определить, сколько было дубовых и сосновых шпал отдельно, если каждая дубовая шпала весила 46 кг, а каждая сосновая 28 кг.

Решение

Пусть x дубовых и y сосновых шпал было погружено на платформу. Если всего шпал было 300, то первое уравнение можно записать как x + y = 300.

Все дубовые шпалы весили 46x кг, а сосновые весили 28y кг. Поскольку дубовые шпалы весили на 1 т меньше, чем сосновые, то второе уравнение можно записать, как 28y − 46= 1000. Это уравнение показывает, что разница масс между дубовыми и сосновыми шпалами, составляет 1000 кг.

Тонны были переведены в килограммы, поскольку масса дубовых и сосновых шпал измерена в килограммах.

В результате получаем два уравнения, которые образуют систему

x plus y ravno 300 step 1

Решим данную систему. Выразим в первом уравнении x. Тогда система примет вид:

x plus y ravno 300 step 2

Подставим первое уравнение во второе и найдём y

x plus y ravno 300 step 3

Подставим y в уравнение = 300 − y и узнаем чему равно x

x plus y ravno 300 step 4

Значит на платформу было погружено 100 дубовых и 200 сосновых шпал.

Проверим удовлетворяет ли решение (100; 200) условиям задачи. Для начала убедимся, что система решена правильно:

x plus y ravno 300 step 5

Было сказано, что всего было 300 шпал. Складываем количество дубовых и сосновых шпал и убеждаемся, что решение (100; 200) удовлетворяет данному условию: 100 + 200 = 300.

Следующее условие: все дубовые шпалы весили на 1 т меньше, чем все сосновые. Видим, что решение (100; 200) удовлетворяет и этому условию, поскольку 46 × 100 кг дубовых шпал легче, чем 28 × 200 кг сосновых шпал: 5600 кг − 4600 кг = 1000 кг.


Задача 3. Взяли три куска сплава меди с никелем в отношениях 2 : 1, 3 : 1 и 5 : 1 по массе. Из них сплавлен кусок массой 12 кг с отношением содержания меди и никеля 4 : 1. Найдите массу каждого исходного куска, если масса первого из них вдвое больше массы второго.

Решение

Пусть x — масса первого куска, y — масса второго куска, z — масса третьего куска. Если из этих кусков сплавлен кусок массой 12 кг, то первое уравнение можно записать как = 12.

Масса первого куска вдвое больше массы второго куска. Тогда второе уравнение можно записать как x 2y.

Полученных двух уравнений недостаточно для решения данной задачи. Если второе уравнение подставить в первое, то мы получим уравнение 2= 12, откуда 3= 12. Это уравнение имеет бесчисленное множество решений.

Составим ещё одно уравнение. Пусть это уравнение будет описывать количество меди, взятого с каждого сплава и сколько меди оказалось в получившемся сплаве.

Если первый сплав имеет массу x, а медь и никель находится нём в отношении 2 : 1, то можно записать, что в новом сплаве содержится 2ns3x меди от первого куска.

Если второй сплав имеет массу y, а медь и никель находится в нём в отношении 3 : 1, то можно записать, что в новом сплаве содержится 3na4y меди от второго куска.

Если третий сплав имеет массу z, а медь и никель находится в отношении 5 : 1, то можно записать, что в новом сплаве содержится 5na6z меди от третьего куска.

Полученный сплав имеет имеет массу 12 кг, а медь и никель находится в нём в отношении 4 : 1. Тогда можно записать, что в полученном сплаве содержится 4na5na12 ravno 96 меди.

Сложим  2ns3x, 3na4y, 5na6z и приравняем эту сумму к 9,6. Это и будет нашим третьим уравнением:

x plus y plus z ravno 12 step 1

Попробуем решить данную систему.

Для начала упростим третье уравнение. Подставим в него второе уравнение и посмотрим, что из этого выйдет:

x plus y plus z ravno 12 step 3

Теперь в главной системе вместо уравнения x plus y plus z ravno 12 step 4 запишем уравнение, которое мы сейчас получили, а именно уравнение 25+ 10= 115,2

x plus y plus z ravno 12 step 5

Подставим второе уравнение в первое:

x plus y plus z ravno 12 step 6

Умножим первое уравнение на −10. Тогда система примет вид:

x plus y plus z ravno 12 step 7

Сложим оба уравнения. Тогда получим простейшее уравнение −5= −4,8 откуда найдём y равный 0,96. Значит масса второго сплава составляет 0,96 кг.

Теперь найдём x. Для этого удобно воспользоваться уравнением = 2y. Значение y уже известно. Осталось только подставить его:

x plus y plus z ravno 12 step 8

Значит масса первого сплава составляет 1,92 кг.

Теперь найдём z. Для этого удобно воспользоваться уравнением = 12. Значения x и y уже известны. Подставим их куда нужно:

x plus y plus z ravno 12 step 9

Значит масса третьего сплава составляет 9,12 кг.


Задания для самостоятельного решения

Задание 1. Приведите следующее уравнение к каноническому (нормальному) виду:
Решение
Задание 2. Приведите следующее уравнение к каноническому (нормальному) виду:
Решение
Задание 3. Приведите следующее уравнение к каноническому (нормальному) виду:
Решение
Задание 4. Приведите следующее уравнение к каноническому (нормальному) виду:
Решение
Задание 5. Решите следующую систему уравнений методом подстановки:
Решение
Задание 6. Решите следующую систему уравнений методом подстановки:
Решение
Задание 7. Решите следующую систему уравнений методом подстановки:
Решение
Задание 8. Решите следующую систему уравнений методом подстановки:
Решение
Задание 9. Решите следующую систему уравнений методом подстановки:
Решение
Задание 10. Решите следующую систему уравнений методом подстановки:
Решение
Задание 11. Решите следующую систему уравнений методом подстановки:
Решение
Задание 12. Решите следующую систему уравнений методом подстановки:
Решение
Задание 13. Решите следующую систему уравнений методом подстановки:
Решение
Задание 14. Решите следующую систему уравнений методом подстановки:
Решение
Задание 15. Решите следующую систему уравнений методом сложения:
Решение
Задание 16. Решите следующую систему уравнений методом сложения:
Решение
Задание 17. Решите следующую систему уравнений методом сложения:
Решение
Задание 18. Решите следующую систему уравнений методом сложения:
Решение
Задание 19. Решите следующую систему уравнений методом сложения:
Решение
Задание 20. Решите следующую систему уравнений методом сложения:
Решение
Задание 21. Решите следующую систему уравнений методом сложения:
Решение
Задание 22. Решите следующую систему уравнений методом сложения:
Решение
Задание 23. Решите следующую систему уравнений методом подстановки:
Решение
Задача 24. На прокормление 8 лошадей и 15 коров отпускали ежедневно 162 кг сена. Сколько сена ежедневно выдавали каждой лошади и каждой корове, если известно, что 5 лошадей получали сена на 3 кг больше, чем 7 коров?

Решение

Пусть x кг сена выдавали каждой лошади, и y кг каждой корове. Лошадей было 8, а коров 15. Это значит всем лошадям выдавали 8x кг сена, а всем коровам 15x кг. Вместе лошадям и коровам выдавали 162 кг сена. Тогда первое уравнение можно записать как 8+ 15= 162

Известно, что 5 лошадей получали 5x кг сена, а 7 коров 7y кг. Если 5 лошадей получали на 3 кг больше сена, чем 7 коров, то второе уравнение можно записать как 5x − 7y = 3.

Поскольку в обоих уравнениях переменные x и y обозначают одно и то же число, то можно образовать из них систему и решить её

Ответ: ежедневно каждой лошади выдавали 9 кг сена, а каждой корове 6 кг.

Задача 25. Для отправки груза было подано несколько вагонов. Если грузить по 15,5 т в вагон, то 4 т груза останутся непогруженными; если же грузить по 16,5 т в вагон, то для полной загрузки вагонов не хватит 8 т груза. Сколько было подано вагонов и сколько тонн было груза?

Решение

Пусть x вагонов было подано для отправки y тонн груза. Погрузку груза в вагоны можно описать с помощью отношения . Это отношение показывает сколько тонн груза приходится на один вагон.

В первом случае в каждый вагон грузится 15,5 т. Тогда первое уравнение можно записать как  . Но в условии сказано, что если грузить по 15,5 т в вагон, то 4 т груза останутся непогруженными. Это означает, что будет погружен не весь груз, а только y − 4 тонн груза. Поэтому первое уравнение перепишем как

Во втором случае в каждый вагон грузится 16,5 т. Тогда второе уравнение можно записать как  . Но в задаче сказано, что если грузить по 16,5 т в вагон, то для полной загрузки вагонов не хватит 8 т груза. Это означает, что будет погружен весь груз, плюс останется места для погрузки ещё восьми тонн груза. Иными словами, при таком раскладе можно погрузить в вагоны y + 8 тонн груза. Поэтому второе уравнение перепишем как

Поскольку в обоих уравнениях переменные x и y обозначают одно и то же число, то можно образовать из них систему и решить её:

Ответ: вагонов было 12, а груза 190 тонн.

Задача 26. В школьном зале поставлены скамейки. Если на каждую скамью посадить по 5 учеников, то не хватит 8 скамеек; если же на каждую скамью посадить по 6 учеников, то 2 скамьи останутся свободными. Сколько скамеек было поставлено в зале и сколько было учеников?

Решение

Пусть x скамеек было поставлено в зале, а учеников было y.

В первом случае на каждую скамейку сажается 5 учеников. Разделим y учеников по 5 человек и посадим их на x скамеек:

y-na-5-ravno-x

Но в условии сказано, что если посадить по 5 учеников на скамейку, то не хватит 8 скамеек. У нас имеется только x скамеек. Чтобы все y учеников смогли сесть на скамейки, добавим к x скамейкам ещё 8 скамеек

Во втором случае на каждую скамейку сажается 6 учеников. Разделим y учеников по 6 человек и посадим их на x скамеек:

y-na-6-ravno-x.png

Но в условии сказано, что если посадить по 6 учеников на скамейку, то 2 скамейки останутся свободными. В этом случае ученики сядут не на x, а на x − 2 скамейки. Перепишем второе уравнение в следующем виде:

Поскольку в обоих уравнениях переменные x и y обозначают одно и то же число, то можно образовать из них систему и решить её:

Ответ: скамеек было 52, а учеников 300.

Задача 27. Несколько человек отправляются на экскурсию. Если при этом каждый внесёт на расходы по 12 руб. 50 коп., то для оплаты расходов не хватит 100 руб.; если же каждый внесёт по 16 руб., то останется излишек 12 руб. Сколько человек участвует в экскурсии?

Решение

Пусть x человек участвует в экскурсии, а расходы на эту экскурсию составляют y рублей.

Если каждый участник экскурсии внесет по 12 руб. 50 коп., то расходы составят 12,50x руб. При этом сказано, что в таком случае для покрытия расходов не хватит 100 руб. Чтобы покрыть расходы прибавим к расходам 12,50x еще 100 рублей

12,50x + 100

Выражение 12,50+ 100, как и переменная y описывает одну и ту же величину — расходы на экскурсию. Поэтому можно соединить эти два выражения знаком равенства, образуя тем самым первое уравнение для системы:

12,50x + 100 = y

Далее в задаче сказано, что если каждый участник внесёт по 16 руб., то останется излишек 12 руб. Поскольку количество участников это x, то расходы при таком раскладе составят 16x. Расходы в 16x рублей больше планируемых y рублей на 12 руб. Чтобы получить второе уравнение вычтем из 16x руб излишек 12 руб.

16− 12

Как и предыдущее выражение 12,50+ 100, выражение 16− 12 описывает расходы на экскурсию и его можно приравнять к переменной y. Это будет вторым уравнением для системы:

16− 12 = y

Получили два уравнения: 12,50x + 100 = y и 16x − 12 = y. Переменные x и y обозначают одно и то же число, поэтому можно образовать из них систему и решить её:

Значит в экскурсии участвует 32 человека.

В данной задаче не стоял  вопрос какими будут расходы на экскурсию. Но для интереса можно вычислить и их:

Ответ: в экскурсии участвует 32 человека.


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Решение задач с помощью пропорции

Решение задачи с помощью пропорции сводится к тому, чтобы сделать неизвестное значение x членом этой пропорции. Затем используя основное свойство пропорции получить линейное уравнение и решить его.

Как решить задачу с помощью пропорции

Рассмотрим простейший пример. Трем группам нужно выплатить стипендию по 1600 рублей каждому. В первой группе 20 студентов. Значит первой группе будет выплачено 1600 × 20, то есть 32 тыс. рублей.

Во второй группе 17 человек. Значит второй группе будет выплачено 1600 × 17, то есть 27,200 тыс. руб.

Ну и выплатим стипендию третьей группе. В ней 15 человек. На них нужно затратить 1600 × 15, то есть 24 тыс. руб.

В результате имеем следующее решение:

решение задачи выдача стипендии первым способом

Для подобных задач решение можно записывать с помощью пропорции.

Пропорция по определению есть равенство двух отношений. К примеру, равенство пропорция a к b как c к d является пропорцией. Эту пропорцию можно прочесть следующим образом:

a так относится к b, как c относится d

Аналогично можно соотнести стипендию и студентов, так чтобы каждому досталось по 1600 рублей.

Итак, запишем первое отношение, а именно отношение тысячи шестисот рублей на одного человека:

1600 на 1

Мы выяснили, что для выплаты 20 студентам по 1600 рублей, нам потребуется 32 тыс. рублей. Значит второе отношение будет отношением тридцати двух тысяч к двадцати студентам:

32000 на 20

Теперь соединим полученные отношения знаком равенства:

1600 на 1 как 32000 на 20

Мы получили пропорцию. Её можно прочесть следующим образом:

Тысяча шестьсот рублей так относятся к одному студенту, как тридцать две тысячи рублей относятся к двадцати студентам.

Понимай по 1600 рублей каждому. Если выполнить деление в обеих частях равенства 1600 на 1 как 32000 на 20 масштаб для строк, то обнаружим, что одному студенту, как и двадцати студентам достанется по 1600 рублей.

Теперь представим, что сумма денег, необходимых для выплаты стипендии двадцати студентам, была бы неизвестной. Скажем, если бы вопрос стоял так: в группе 20 студентов и каждому нужно выплатить по 1600 рублей. Сколько всего рублей требуется для выплаты стипендии?

В таком случае пропорция 1600 на 1 как 32000 на 20 масштаб для строк приняла бы вид 1600 на 1 как x на 20. То есть, сумма денег, необходимая для выплаты стипендии, стала неизвестным членом пропорции. Эту пропорцию можно прочесть так:

Тысяча шестьсот рублей так относятся к одному студенту, как неизвестное число рублей относится к двадцати студентам

Теперь воспользуемся основным свойством пропорции. Оно гласит, что произведение крайних членов пропорции равно произведению средних:

1600 на 1 как x на 20 пропорция рисунок

Перемножив члены пропорции «крест-накрест», получим равенство 1600 × 20 = 1 × x. Вычислив обе части равенства, получим 32000 = x или x = 32000. Иными словами, мы найдём значение неизвестной величины, которую искали.

Аналогично можно было определить общую сумму и для остального количества студентов — для 17 и 15. Эти пропорции выглядели как 1600 на 1 равно x на 17  и  1600 на 1 равно x на 15. Воспользовавшись основным свойством пропорции, можно найти значение x

1600 на 1 равно x на 15 и x na 17 решение


Задача 2. Расстояние равное 100 км автобус проехал за 2 часа. Сколько времени потребуется автобусу, чтобы проехать 300 км, если будет ехать с той же скоростью?

Можно сначала определить расстояние, которое автобус проезжает за один час. Затем определить сколько раз это расстояние содержится в 300 километрах:

100 : 2 = 50 км на каждый час движения

300 км : 50 = 6 часов

Либо можно составить пропорцию «сто километров так относятся к одному часу, как триста километров к неизвестному числу часов»:

пропорция 100на2 как 300наt решение


Отношение одноименных величин

Если крайние или средние члены пропорции поменять местами, то пропорция не нарушится.

Так, в пропорции 1600 на 1 как 32000 на 20 масштаб для строк можно поменять местами крайние члены. Тогда получится пропорция пропорция 20 к 1 как 32000 к 1600.

Пропорция также не нарушится, если её перевернуть, то есть использовать обратные отношения в обеих частях.

Перевернем пропорцию пропорция 20 к 1 как 32000 к 1600. Тогда получим пропорцию пропорция 1 к 20 как 1600 к 32000. Взаимосвязь при этом не нарушается. Отношение между студентами равно отношению между суммами денег, предназначенных для этих студентов. Такую пропорцию часто составляют в школе, когда для решения задачи составляются таблицы

таблица к пропорции 1 к 20 как 1600 к 32000

Этот способ записи очень удобен, поскольку позволяет перевести условие задачи в более понятный вид. Решим задачу в которой требовалось определить сколько рублей нужно для выплаты стипендии двадцати студентам.

Условие задачи запишем следующим образом:

условие задачи 1 к 20 как 1600 к 32000

Составим таблицу на основе этого условия:

таблица к пропорции 1 к 20 как 1600 к x

Составим пропорцию, используя данные таблицы:

пропорция 1 к 20 как 1600 к x

Используя основное свойство пропорции, получим линейное уравнение и найдем его корень:

пропорция 1 к 20 как 1600 к x решение

Изначально, мы имели дело с пропорцией 1600 на 1 как 32000 на 20 масштаб для строк, которая составлена из отношений величин разной природы. В числителях отношений располагались суммы денег, а в знаменателях количество студентов:

рисунок 2 пропорция 1600 к 1 как 32000 к 20

Поменяв местами крайние члены, мы получили пропорцию пропорция 20 к 1 как 32000 к 1600. Эта пропорция составлена из отношений величин одной природы. В первом отношении содержатся количества студентов, а во втором — суммы денег:

рисунок 2 пропорция 20 к 1 как 32000 к 1600

Если отношение составлено из величин одной природы, то мы будем называть его отношением одноименных величин. Например, отношения между фруктами, деньгами, физическими величинами, явлениями, действиями.

Отношение может быть составлено, как из одноименных величин, так и из величин разной природы. Примерами последних являются отношение расстояния ко времени, отношения стоимости товара к его количеству, отношение общей суммы стипендии к количеству студентов.


Пример 2. В школьном саду посажены сосны и березы, причём на каждую сосну приходится 2 березы. Сколько посадили сосен в саду, если берез посадили 240?

Определим сколько сосен было посажено в саду. Для этого составим пропорцию. В условии сказано, что на каждую сосну приходится 2 березы. Напишем отношение, показывающее что на одну сосну приходится две березы:

две первых

Теперь напишем второе отношение, показывающее что на x сосен приходится 240 берез

240 na x

Соединим эти отношения знаком равенства, получим следующую пропорцию:

пропорция 2 к 1 как 240 к x

«2 березы так относятся к одной сосне,
как 240 берез относятся к x соснам»

Используя основное свойство пропорции, находим значение x

пропорция к задаче 1 к 20 как 1600 к 32000 решение 1

Либо пропорцию можно составить, предварительно записав условие, как в прошлом примере:

условие задачи 1 к 20 как 1600 к 32000 условие 2

Получится та же пропорция, но в этот раз она будет составлена из отношений одноименных величин:

пропорция к задаче 1 к 20 как 1600 к 32000 условие 2

Значит в саду посадили 120 сосен.


Пример 3. Из 225 кг руды получили 34,2 кг меди. Каково процентное содержание меди в руде?

картинка к задаче нахождение процентного соотношения меди

Можно разделить 34,2 на 225 и полученный результат выразить в процентах:

решение 1 к задаче нахождение процентного соотношения меди

Либо составить пропорцию 225 килограммам руды так приходятся на 100%, как 34,2 кг меди приходятся на неизвестное число процентов:

225на100 равно 342на x решение

Либо составить пропорцию в которой отношения составлены из одноименных величин:

условие задачи 225 к 34 2 как 100 к x

решение 2 задачи 225 к 34 2 как 100 к x


Задачи на прямую пропорциональность

Понимание отношений одноименных величин приводит к пониманию решения задач на прямую и обратную пропорциональность. Начнем с задач на прямую пропорциональность.

Для начала вспомним, что такое прямая пропорциональность. Это взаимосвязь между двумя величинами при которой увеличение одной из них влечет за собой увеличение другой во столько же раз.

Если расстояние в 50 км автобус прошел за 1 час, то для прохождения расстояния в 100 км (при той же скорости) автобусу потребуется 2 часа. Во сколько раз увеличилось расстояние, во столько же раз увеличилось время движения. Как показать это с помощью пропорции?

Одно из предназначений отношения заключается в том, чтобы показать во сколько раз первая величина больше второй. А значит и мы c помощью пропорции можем показать, что расстояние и время увеличились в два раза. Для этого воспользуемся отношением одноименных величин.

Покажем, что расстояние увеличилось в два раза:

100 на 50

Аналогично покажем, что время увеличилось во столько же раз

2 на 1

Соединим эти отношения знаком равенства, получим пропорцию:

пропорция 100 к 50 как 2 к 1

«100 километров так относятся к 50 километрам, как 2 часа относятся к 1 часу»

Если выполнить деление в обеих частях равенства пропорция 100 к 50 как 2 к 1, то обнаружим что расстояние и время были увеличены в одинаковое число раз.

2 = 2


Задача 2. За 3 ч на мельнице смололи 27 т пшеничной муки. Сколько тонн пшеничной муки можно смолоть за 9 ч, если темп работы не изменится?

Решение

Время работы мельницы и масса перемолотой муки — прямо пропорциональные величины. При увеличении времени работы в несколько раз, количество перемолотой муки увеличится во столько же раз. Покажем это с помощью пропорции.

В задаче дано 3 ч. Эти 3 ч увеличились до 9 ч. Запишем отношение 9 ч к 3 ч. Это отношение будет показывать во сколько раз увеличилось время работы мельницы:

9 na 3

Теперь запишем второе отношение. Это будет отношение x тонн пшеничной муки к 27 тоннам. Данное отношение будет показывать, что количество перемолотой муки увеличилось во столько же раз, сколько и время работы мельницы

x на 27

Соединим эти отношения знаком равенства, получим пропорцию пропорция 9на3 равно xна27.

Воспользуемся основным свойством пропорции и найдем x

пропорция 9на3 равно xна27 решение

Значит за 9 ч можно смолоть 81 т пшеничной муки.

Вообще, если взять две прямо пропорциональные величины и увеличить их в одинаковое число раз, то отношение нового значения к старому значению первой величины будет равно отношению нового значения к старому значению второй величины.

Так и в предыдущей задаче старые значения были 3 ч и 27 т. Эти значения были увеличены в одинаковое число раз (в три раза). Новыми значениями стали 9 ч и 81 ч. Тогда отношение нового значения времени работы мельницы к старому значению  9 na 3  равно отношению нового значения массы перемолотой муки к старому значению  81 na 27

пропорция 9 na 3 ravno 81 na 27

Если выполнить деление в обеих частях равенства, то обнаружим, что время работы мельницы и количество смолотой муки увеличилось в одинаковое число раз:

3 = 3

Пропорцию, которую составляют к задачам на прямую пропорциональность, можно описать с помощью выражения:

пропорция n2 na n1 равно m2 na m1

Где n2 − новое значение первой величины
n1 − старое значение первой величины
m2 − новое значение второй величины
m1 − старое значение второй величины

Применительно к нашей задаче значения переменных n1 n2 m1 m2 будут следующими:

значения переменных m и n к первой задаче на пропорции

Где m2 впоследствии стало равно 81.


Задача 2. Для 8 коров в зимнее время доярка ежедневно заготовляет 80 кг сена, 96 кг корнеплодов, 120 кг силоса и 12 кг концентратов. Определить ежедневный расход этих кормов для 18 коров.

Решение

Количество коров и масса каждого из кормов — прямо пропорциональные величины. При увеличении количества коров в несколько раз, масса каждого из кормов увеличится во столько же раз.

Составим несколько пропорций, вычисляющих массу каждого из кормов для 18 коров.

Начнем с сена. Ежедневно для 8 коров его заготовляют 80 кг. Тогда для 18 коров будет заготовлено x кг сена.

Запишем отношение, показывающее во сколько раз увеличилось количество коров:

18 на 8

Теперь запишем отношение, показывающее во сколько раз увеличилась масса сена:

x na 80

Соединим эти отношения знаком равенства, получим пропорцию:

18 на 8 равно x на 80

Отсюда находим x

18 на 8 равно x на 80 решение

Значит для 18 коров нужно заготовить 180 кг сена. Аналогично определяем массу корнеплодов, силоса и концентратов.

Для 8 коров ежедневно заготовляют 96 кг корнеплодов. Тогда для 18 коров будет заготовлено x кг корнеплодов. Составим пропорцию из отношений  18 на 8  и  x na 96 , затем вычислим значение x

18 na 8 ravno x na 9 решение

Определим сколько силоса и концентратов нужно заготовить для 18 коров:

18 на 8 равно x на 120 и x na 12 решение

Значит для 18 коров ежедневно нужно заготавливать 180 кг сена, 216 кг корнеплодов, 270 кг силоса и 27 кг концентратов.


Задача 3. Хозяйка варит вишнёвое варенье, причём на 3 стакана вишни кладёт 2 стакана сахара. Сколько сахара нужно положить на 12 стаканов вишни? на 10 стаканов вишни? на семь целых одна вторая стакана вишни?

Решение

Количество стаканов вишни и количество стаканов сахарного песка — прямо пропорциональные величины. При увеличении количества стаканов вишни в несколько раз, количество стаканов сахара увеличится во столько же раз.

Запишем отношение, показывающее во сколько раз увеличилось количество стаканов вишни:

12 на 3

Теперь запишем отношение, показывающее во сколько раз увеличилось количество стаканов сахара:

x na 2

Соединим эти отношения знаком равенства, получим пропорцию и найдем значение x

12 на 3 равно x на 2 решение

Значит на 12 стаканов вишни нужно положить 8 стаканов сахара.

Определим количество стаканов сахара для 10 стаканов вишни и семь целых одна вторая стакана вишни

пропорция для 10 стаканов и 7 целых и половины стакана


Задачи на обратную пропорциональность

Для решения задач на обратную пропорциональность опять же можно использовать пропорцию, составленнаю из отношений одноименных величин.

В отличие от прямой пропорциональности, где величины увеличиваются или уменьшаются в одну и ту же сторону, в обратной пропорциональности величины изменяются обратно друг другу.

Если одна величина увеличивается в несколько раз, то другая уменьшается во столько же раз. И наоборот, если одна величина уменьшается в несколько раз, то другая увеличивается во столько же раз.

Допустим, что нужно покрасить забор, состоящий из 8 листов

забор из восьми листов

Один маляр будет красить все 8 листов сам

забор из восьми листов рисунок 2

Если маляров будет 2, то каждый покрасит по 4 листа.

забор из восьми листов рисунок 3

Это конечно же при условии, что маляры будут честными между собой и справедливо разделят эту работу поровну на двоих.

Если маляров будет 4, то каждый покрасит по 2 листа

забор из восьми листов рисунок 4

Замечаем, что при увеличении количества маляров в несколько раз, количество листов которые приходятся на одного маляра уменьшаются во столько же раз.

Итак, мы увеличили количество маляров с 1 до 4. Другими словами, увеличили количество маляров в четыре раза. Запишем это с помощью отношения:

4 на 1

В результате количество листов забора, которые приходятся на одного маляра уменьшилось в четыре раза. Запишем это с помощью отношения:

8 на 2

Соединим эти отношения знаком равенства, получим пропорцию

пропорция 4 на 1 равно 8 на 2

«4 маляра так относятся к 1 маляру, как 8 листов относятся к 2 листам»


Задача 2. 15 рабочих закончили отделку квартир в новом доме за 24 дня. За сколько дней выполнили бы эту работу 18 рабочих?

Решение

Количество рабочих и количество дней, затраченных на работу — обратно пропорциональные величины. При увеличении количества рабочих в несколько раз, количество дней, необходимых для выполнения этой работы, уменьшится во столько же раз.

Запишем отношение 18 рабочих к 15 рабочим. Это отношение будет показывать во сколько раз увеличилось количество рабочих

18 на 15

Теперь запишем второе отношение, показывающее во сколько раз уменьшилось количество дней. Поскольку количество дней уменьшится с 24 дней до x дней, то второе отношение будет отношением старого количества дней (24 дня) к новому количеству дней (x дней)

24 на x

Соединим полученные отношения знаком равенства, получим пропорцию:

пропорция 18 на 15 равно 24 на x

Отсюда находим x

пропорция 18 на 15 равно 24 на x решение

Значит 18 рабочих выполнят необходимую работу за 20 дней.

Вообще, если взять две обратно пропорциональные величины и увеличить одну из них в определенное число раз, то другая уменьшится во столько же раз. Тогда отношение нового значения к старому значению первой величины будет равно отношению старого значения к новому значению второй величины.

Так и в предыдущей задаче старые значения были 15 рабочих и 24 дня. Количество рабочих было увеличено с 15 до 18 (т.е. было увеличено в 18 на 15 значение раза). В результате количество дней, необходимых для выполнения работы, уменьшилось во столько же раз. Новыми значениями стали 18 рабочих и 20 дней. Тогда отношение нового количества рабочих к старому количеству  18 на 15  равно отношению старого количества дней к новому количеству 24 на x

Для составления пропорции к задачам на обратную пропорциональность можно пользоваться формулой:

пропорция n2 na n1 равно m1 na m2

Где n2 − новое значение первой величины
n1 − старое значение первой величины
m1 − старое значение второй величины
m2 − новое значение второй величины

Применительно к нашей задаче значения переменных n1 n2 m1 m2 будут следующими:

значения переменных m и n к задаче где 15 рабочих

Где m2 впоследствии стало равно 20.


Задача 2. Скорость парохода относится к скорости течения реки, как 36 : 5. Пароход двигался вниз по течению 5 ч 10 мин. Сколько времени потребуется ему, чтобы вернуться обратно?

Решение

Собственная скорость парохода составляет 36 км/ч. Скорость течения реки реки 5 км/ч. Поскольку пароход двигался по течению руки, то скорость его движения составила 36 + 5 = 41 км/ч. Время пути составила 5 ч 10 мин. Для удобства выразим время в минутах:

5 ч 10 мин = 300 мин + 10 мин = 310 мин

Поскольку на обратном пути пароход двигался против течения реки, то его скорость составила 36 − 5 = 31 км/ч.

Скорость парохода и время его движения — обратно пропорциональные величины. При уменьшении скорости в несколько раз, время его движения увеличится во столько же раз.

Запишем отношение, показывающее во сколько раз уменьшилась скорость движения:

41 на 31

Теперь запишем второе отношение, показывающее во сколько раз увеличилось время движения. Поскольку новое время x будет больше старого времени, в числителе отношения запишем время x, а в знаменателе старое время, равное трёхсот десяти минутам

x na 310

Соединим полученные отношения знаком равенства, получим пропорцию 41 na 31 ravno 410 na 310. Отсюда найдём значение x

41 na 31 ravno 410 na 310 решение

410 минут это 6 часов и 50 минут. Значит пароходу потребуется 6 часов и 50 минут, чтобы вернуться обратно.


Задача 3. На ремонте дороги работало 15 человек, и они должны были закончить работу за 12 дней. На пятый день утром подошли еще несколько рабочих, и оставшаяся работа была выполнена за 6 дней. Сколько рабочих прибыло дополнительно?

Решение

Вычтем из 12 дней 4 отработанных дня. Так мы определим сколько ещё дней осталось работать пятнадцати рабочим

12 дней − 4 дня = 8 дней

На пятый день дополнительно прибыло x рабочих. Тогда всего рабочих стало 15 + x.

Количество рабочих и количество дней, необходимых для выполнения работы — обратно пропорциональные величины. При увеличении количества рабочих в несколько раз, количество дней уменьшится во столько же раз.

Запишем отношение, показывающее во сколько раз увеличилось количество рабочих:

15 plus x na 15

Теперь запишем во сколько раз уменьшилось количество дней, необходимых для выполнения работы:

8 na 6

Соединим эти отношения знаком равенства, получим пропорцию 15 plus x na 15 na 8 na 6. Отсюда можно вычислить значение x

15 plus x na 15 na 8 na решение

Значит 5 рабочих прибыло дополнительно.


Масштаб

Масштабом называют отношение длины отрезка на изображении к длине соответствующего отрезка на местности.

Допустим, что расстояние от дома до школы составляет 8 км. Попробуем нарисовать план местности, где будут указаны дом, школа и расстояние между ними. Но изобразить на бумаге расстояние, равное 8 км мы не можем, поскольку оно довольно велико. Но зато мы можем уменьшить это расстояние в несколько раз так, чтобы оно уместилось на бумаге.

Пусть километры на местности на нашем плане будут выражаться в сантиметрах. Переведем 8 километров в сантиметры, получим 800 000 сантиметров.

Уменьшим 800 000 см в сто тысяч раз:

800 000 см : 100 000 см = 8 см

8 см это расстояние от дома до школы, уменьшенное в сто тысяч раз. Теперь без труда можно нарисовать на бумаге дом и школу, расстояние между которыми будет 8 см.

дом и школа расстояние между которыми как бы 8 см

Эти 8 см относятся к реальным 800 000 см. Так и запишем с помощью отношения:

8 : 800 000

Одно из свойств отношения гласит, что отношение не меняется если его члены умножить или разделить на одно и то же число.

В целях упрощения отношения 8 : 800 000 оба его члена можно разделить на 8. Тогда получим отношение 1 : 100 000. Это отношение и назовём масштабом. Данное отношение показывает, что один сантиметр на плане относится (или соответствует) ста тысячам сантиметров на местности.

Поэтому на нашем рисунке необходимо указать, что план составлен в масштабе 1 : 100 000

дом и школа расстояние между которыми как бы 8 см

Примеры:

1 см на плане относится к 100 000 см на местности;
2 см на плане относится к 200000 см на местности;
3 см на плане относится к 300000 на местности и т.д.

К любой карте или плану указывается в каком масштабе они сделаны. Этот масштаб позволяет определять реальное расстояние между объектами.

Так, наш план составлен в масштабе 1 : 100 000. На этом плане расстояние между домом и школой составляет 8 см. Чтобы вычислить реальное расстояние между домом и школой, нужно 8 см увеличить в 100 000 раз. Иными словами, умножить 8 см на 100 000

8 см × 100 000 = 800 000 см

Получаем 800 000 см или 8 км, если перевести сантиметры в километры.

Допустим, что между домом и школой располагается дерево. На плане расстояние между школой и этим деревом составляет 4 см.

дом и дерево 4 км

Тогда реальное расстояние между домом и деревом будет 4 см × 100 000 = 400 000 см или 4 км.

Расстояние на местности можно определять с помощью пропорции. В нашем примере расстояние между домом и школой будет вычисляться с помощью следующей пропорции:

1 на 100000 как 8 на x

Эту пропорцию можно прочитать так:

1 см на плане так относится к 100000 см на местности, как 8 см на плане относятся к x см на местности.

Из этой пропорции узнаём, что значение x равно 800000 см.


Пример 2. На карте расстояние между двумя городами составляет 8,5 см. Определить реальное расстояние между городами, если карта составлена в масштабе 1 : 1 000 000.

Решение

Масштаб 1 : 1 000 000 указывает, что 1 см на карте соответствует 1 000 000 см на местности. Тогда 8,5 см будут соответствовать x см на местности. Составим пропорцию 1 к 1000000 как 8,5 к x

1 на 1000000 равно 85 на x решение

В 1 км содержится 100000 см. Тогда в 8 500 000 см будет 

Либо можно рассуждать так. Расстояние на карте и расстояние на местности — прямо пропорциональные величины. При увеличении расстояния на карте в несколько раз, расстояние на местности увеличится во столько же раз. Тогда пропорция примет следующий вид. Первое отношение будет показывать во сколько раз расстояние на местности больше расстояния на карте:

1000000 к 1

Второе отношение покажет, что расстояние на местности во столько же раз больше, чем 8,5 см на карте:

x на 85

Отсюда x равен 8 500 000 см или 85 км.

1000000 к 1 как x к 85 решение


Задача 3. Длина реки Невы 74 км. Чему равняется ее длина на карте, масштаб которой 1 : 2 000 000

Решение

Масштаб 1 : 2000000 говорит о том, что 1 см на карте соответствует 2 000 000 см на местности.

А 74 км на это 74 × 100 000 = 7 400 000 см на местности. Уменьшив 7 400 000 в 2 000 000, мы определим длину реки Невы на карте

7 400 000 : 2 000 000 = 3,7 см

Значит на карте, масштаб которой 1 : 2 000 000 длина реки Невы составляет 3,7 см.

Запишем решение с помощью пропорции. Первое отношение будет показывать сколько раз длина на карте меньше длины на местности:

2000000 к 1

Второе отношение будет показывать, что 74 км (7 400 000 см) уменьшились во столько же раз:

7400000 к x

Отсюда находим x равный 3,7 см

2000000 к 1 равно 7400000 на x решение


Задачи для самостоятельного решения

Задача 1. Из 21 кг хлопкового семени получили 5,1 кг масла. Сколько масла получится из 7 кг хлопкового семени?

Решение

Пусть x кг масла можно получить из 7 кг хлопкового семени. Масса хлопкового семени и масса получаемого масла — прямо пропорциональные величины. Тогда уменьшение хлопкового семени с 21 кг до 7 кг, приведет к уменьшению получаемого масла во столько же раз.

Ответ: из 7 кг хлопкового семени получится 1,7 кг масла.

Задача 2. На некотором участке железнодорожного пути старые рельсы длиной в 8 м заменили новыми длиной в 12 м. Сколько потребуется новых двенадцатиметровых рельсов, если сняли 360 старых рельсов?

Решение

Длина участка на котором производится замена рельсов равна 8 × 360 = 2880 м.

Пусть x двенадцатиметровых рельсов требуется для замены. Увеличение длины одного рельса с 8 м до 12 м приведет к уменьшению количества рельсов с 360 до x штук. Иными словами, длина рельса и их количество связаны обратно пропорциональной зависимостью

Ответ: для замены старых рельсов потребуется 240 новых.

Задача 3. 60% учеников класса пошли в кино, а остальные 12 человек – на выставку. Сколько учащихся в классе?

Решение

Если 60% учащихся пошли в кино, а остальные 12 человек на выставку, то на 40% учащихся и будут приходиться 12 человек, пошедших на выставку. Тогда можно составить пропорцию в которой 12 учащихся так относятся к 40%, как все x учащихся относятся к 100%

Либо можно составить пропорцию, состоящей из отношений одноименных величин. Количество учащихся и процентная доля изменяются прямо пропорционально. Тогда можно записать, что во сколько раз увеличилось количество участников    во столько же раз увеличилась процентная доля   (с 40% до 100%)

Ответ: в классе 30 учащихся.

Задача 4. Расстояние на карте между городами 18 см. Какое действительное расстояние между городами, если масштаб карты 1 : 500 000?

Решение

Масштаб 1 : 500000 говорит о том, что 1 см на карте соответствует 500 000 см на местности.

Тогда увеличив 18 см в 500 000, мы получим действительное расстояние между городами

18 см × 500 000 = 9 000 000 см

Переведем 9 000 000 см в километры. В одном километре 100 000 см. Тогда в 9 000 000 см будет

Запишем решение с помощью пропорции:

Ответ: расстояние между городами 90 км.

Задача 5. Пешеход затратил на путь 2,5 ч, двигаясь со скоростью 3,6 км/ч. Сколько времени затратит пешеход на тот же путь, если его скорость будет 4,5 км/ч

Решение

Скорость и время — обратно пропорциональные величины. При увеличении скорости в несколько раз, время движения уменьшится во столько же раз.

Запишем отношение, показывающее по сколько раз увеличилась скорость движения пешехода:

Запишем отношение, показывающее что время движения уменьшилось во столько же раз:

Соединим эти отношения знаком равенства, получим пропорцию и найдём значение x

Ответ: пешеход затратит 2 часа если будет двигаться со скорость 4,5 км/ч.

Задача 6. Перевыполнив план на 15%, завод выпустил за месяц 230 станков. Сколько станков должен был выпустить за месяц завод по плану?

Решение

Выражение «перевыполнили план на 15%» означает, что к имеющемуся 100% плану выполнили еще 15% того же плана. Итого выполнено 115% плана. На эти 115% приходятся 230 выпущенных станков

А по плану завод должен был выпустить x станков. Эти x станков приходятся на 100% изначального плана

Составим пропорцию из имеющихся отношений и найдём значение x

Либо можно воспользоваться отношениями одноименных величин. Количество выпущенных станков и процентная доля, на которые эти станки приходятся, связаны прямо пропорциональной зависимостью. При увеличении количества станков в несколько раз, процентная доля увеличивается во столько же раз. Тогда можно записать, что 230 станков во столько раз больше, чем x станков, во сколько раз больше 115%, чем 100%

Ответ: по плану завод должен был выпустить 200 станков.


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Решение задач с помощью уравнений

Решение задачи обычно сводится к тому, чтобы путем логических рассуждений и вычислений найти значение какой-нибудь величины. Например, найти скорость, время, расстояние, массу какого-нибудь предмета или количество чего-то.

Такую задачу можно решить с помощью уравнения. Для этого искомое значение обозначают через переменную, затем путем логических рассуждений составляют и решают уравнение. Решив уравнение, производят проверку на то, удовлетворяет ли решение уравнения условиям задачи.

Запись выражений, содержащих неизвестное

Решение задачи сопровождается составлением уравнения к этой задаче. На начальном этапе изучения задач желательно научиться составлять буквенные выражения, описывающие ту или иную жизненную ситуацию. Этот этап не является сложным и его можно изучать в процессе решения самой задачи.

Рассмотрим несколько ситуаций, которые можно записать с помощью математического выражения.

Задача 1. Возраст отца x лет. Мама на два года младше. Сын младше отца в 3 раза. Запишите возраст каждого с помощью выражений.

Решение:

возраст отца мамы и сына таблица 1


Задача 2. Возраст отца x лет, мама на 2 года младше отца. Сын младше отца в 3 раза, дочь младше матери в 3 раза. Запишите возраст каждого с помощью выражений.

Решение:

возраст отца мамы сына и дочери таблица 2


Задача 3. Возраст отца x лет, мама на 3 года младше отца. Сын младше отца в 3 раза, дочь младше матери в 3 раза. Сколько лет каждому, если общий возраст отца, мамы, сына и дочери составляет 92 года?

Решение:

В данной задаче помимо записи выражений, необходимо вычислить возраст каждого члена семьи.

Сначала запишем возраст каждого члена семьи с помощью выражений. За переменную x примем возраст отца, и далее пользуясь этой переменной составим остальные выражения:

возраст отца мамы сына и дочери таблица 3

Теперь определим возраст каждого члена семьи. Для этого нам нужно составить и решить уравнение. Все компоненты уравнения у нас уже готовы. Осталось только собрать их воедино.

Общий возраст в 92 года получился путем сложения возрастов папы, мамы, сына и дочери:

возраст отца мамы сына и дочери рисунок 1

Для каждого возраста мы составили математическое выражение. Эти выражения и будут компонентами нашего уравнения. Давайте соберем наше уравнение согласно данной схеме и таблице, которая была приведена выше. То есть, слова папа, мама, сын, дочь заменим на соответствующее им в таблице выражение:

возраст отца мамы сына и дочери уравнение 1

Выражение, отвечающее за возраст мамы x − 3, для наглядности было взято в скобки.

Теперь решим получившееся уравнение. Для начала можно раскрыть скобки там, где это можно:

возраст отца мамы сына и дочери уравнение 2

Чтобы освободить уравнение от дробей, умножим обе части на 3

возраст отца мамы сына и дочери уравнение 3

Решим получившееся уравнение, пользуясь известными тождественными преобразованиями:

возраст отца мамы сына и дочери уравнение 4

Мы нашли значение переменной x. Эта переменная отвечала за возраст отца. Значит возраст отца составляет 36 лет.

Зная возраст отца, можно вычислить возрасты остальных членов семьи. Для этого нужно подставить значение переменной x в те выражения, которые отвечают за возраст конкретного члена семьи.

В задаче было сказано, что мама на 3 года младше отца. Ее возраст мы обозначили через выражение x−3. Значение переменной x теперь известно, и чтобы вычислить возраст мамы, нужно в выражении x − 3 вместо x подставить найденное значение 36

x − 3 = 36 − 3 = 33 года маме.

Аналогично определяется возраст остальных членов семьи:

возраст отца мамы сына и дочери таблица 4

возраст отца мамы сына и дочери уравнение 5

Проверка:

возраст отца мамы сына и дочери проверка 1


Задача 4. Килограмм яблок стоит x рублей. Запишите выражение, вычисляющее сколько килограмм яблок можно купить на 300 рублей.

Решение

Если килограмм яблок стоит x рублей, то на 300 рублей можно купить 300 na x килограмм яблок.

Пример. Килограмм яблок стоит 50 рублей. Тогда на 300 рублей можно купить 300 na 50, то есть 6 килограмм яблок.


Задача 5. На x рублей было куплено 5 кг яблок. Запишите выражение, вычисляющее сколько рублей стоит один килограмм яблок.

Решение

Если за 5 кг яблок было уплачено x рублей, то один килограмм будет стоит x na 5 рублей

Пример. За 300 рублей было куплено 5 кг яблок. Тогда один килограмм яблок будет стоит 300 na 5, то есть 60 рублей.


Задача 6. Том, Джон и Лео на перемене пошли в столовую и купили по бутерброду и по кружке кофе. Бутерброд стоит x рублей, а кружка кофе — 15 рублей. Определите стоимость бутерброда, если известно, что за всё было уплачено 120 рублей?

Решение

Конечно, данная задача проста как три копейки и ее можно решить не прибегая к уравнению. Для этого из 120 рублей нужно вычесть стоимость трех кружек кофе (15 × 3), и полученный результат разделить на 3

стоимость бутерброжов и кофе простое решение

Но наша цель — составить уравнение к задаче и решить это уравнение. Итак, стоимость бутерброда x рублей. Куплено их всего три. Значит увеличив стоимость в три раза, мы получим выражение описывающее сколько рублей было уплачено за три бутерброда

3x — стоимость трех бутербродов

А стоимость трех кружек кофе можно записать как 15 × 3. 15 это стоимость одной кружки кофе, а 3 множитель (Том,  Джон и Лео), увеличивающий эту стоимость в три раза.

По условию задачи за все уплачено 120 рублей. У нас уже появляется примерная схема, что нужно делать:

стоимость бутербродов и кофе схема

Выражения, описывающие стоимость трех бутербродов и трех кружек кофе, у нас уже готовы. Это выражения 3x и 15 × 3. Пользуясь схемой составим уравнение и решим его:

стоимость бутерброжов и кофе решение к задаче

Итак, стоимость одного бутерброда составляет 25 рублей.

Задача решается верно только в том случае, если уравнение к ней составлено правильно. В отличие от обычных уравнений, по которым мы учимся находить корни, уравнения для решения задач имеют своё конкретное применение. Каждый компонент такого уравнения может быть описан в словесной форме. Составляя уравнение, обязательно нужно понимать для чего мы включаем в его состав тот или иной компонент и зачем он нужен.

Также необходимо помнить, что уравнение это равенство, после решения которого левая часть должна будет равняться правой части. Составленное уравнение не должно противоречить этой идее.

Представим, что уравнение это весы с двумя чашами и экраном, показывающим состояние весов.

весы

В данный момент экран показывает знак равенства. Понятно почему левая чаша равна правой чаше — на чашах ничего нет. Состояние весов и отсутствие на чашах чего-либо запишем с помощью следующего равенства:

0 = 0

Положим на левую чашу весов арбуз:

весы арбуз на левой чаше

Левая чаша перевесила правую чашу и экран забил тревогу, показав знак не равно ( ≠ ). Этот знак говорит о том, что левая чаша не равна правой чаше.

Теперь попробуем решить задачу. Пусть требуется узнать сколько весит арбуз, который лежит на левой чаше. Но как это узнать? Ведь наши весы предназначены только для проверки равна ли левая чаша правой.

На помощь приходят уравнения. Вспомним, что уравнение по определению есть равенство, содержащее в себе переменную значение которой требуется найти. Весы в данном случае играют роль этого самого уравнения, а масса арбуза это переменная, значение которой нужно найти. Наша цель правильно составить это уравнение. Понимай, выровнять весы так, чтобы можно было вычислить массу арбуза.

Чтобы выровнять весы, на правую чашу можно положить какой-нибудь тяжелый предмет. Например, положим туда гирю массой 7 кг.

весы арбуз на левой чаше а на правой чаше гиря 7 кг

Теперь наоборот правая чаша перевесила левую. Экран по прежнему показывает, что чаши не равны.

Попробуем на левую чашу положить гирю массой 4 кг

весы арбуз на левой чаше и гиря 4 кг а на правой чаше гиря 7 кг

Теперь весы выровнялись. На рисунке видно, что левая чаша на уровне правой чаши. А экран показывает знак равенства. Этот знак говорит о том, что левая чаша равна правой чаше.

Таким образом мы получили уравнение — равенство, содержащее неизвестное. Левая чаша — это левая часть уравнения, состоящая из компонентов 4 и переменной x (массы арбуза), а правая чаша — это правая часть уравнения, состоящая из компонента 7.

весы арбуз на левой чаше и гиря 4 кг а на правой чаше гиря 7 кг

Ну и нетрудно догадаться, что корень уравнения 4 + x = 7 равен 3. Значит масса арбуза равна 3 кг.

Аналогично дела обстоят и с другими задачами. Чтобы найти какое-нибудь неизвестное значение, к левой или к правой части уравнения добавляют различные элементы: слагаемые, множители, выражения. В школьных задачах эти элементы бывают уже даны. Остается только правильно структурировать их и построить уравнение. Мы же в данном примере занимались подбором, пробуя гири разной массы, чтобы вычислить массу арбуза.

Естественно, те данные которые даны в задаче сначала нужно привести к виду, при котором их можно включить в уравнение. Поэтому, как говорят «хочешь не хочешь, а думать придётся».

Рассмотрим следующую задачу. Возраст отца равен возрасту сына и дочери вместе. Сын вдвое старше дочери и на двадцать лет моложе отца. Сколько лет каждому?

Возраст дочери можно обозначить через x. Если сын вдвое старше дочери, то его возраст будет обозначаться как 2x. В условии задачи сказано, что вместе возраст дочери и сына равен возрасту отца. Значит возраст отца будет обозначаться суммой x + 2x

весы возраст отца и сына и дочери таблица

В выражении x plus 2x можно привести подобные слагаемые. Тогда возраст отца будет обозначаться как 3x

Теперь составим уравнение. Нам нужно получить равенство в котором можно найти неизвестное x. Воспользуемся весами. На левую чашу положим возраст отца (3x), а на правую чашу возраст сына (2x)

весы возраст отца и сына

Понятно почему левая чаша перевесила правую и почему экран показывает знак ( ≠ ). Ведь логично, что возраст отца больше возраста сына.

Но нам нужно уравнять весы, чтобы можно было вычислить неизвестное x. Для этого к правой чаше нужно прибавить какое-нибудь число. Какое именно число указано в задаче. В условии было сказано, что сын моложе отца на 20 лет. Значит 20 лет это то самое число, которое нужно положить на весы.

Весы выровняться, если мы эти 20 лет добавим на правую чашу весов. Иными словами, вырастим сына до возраста отца

весы возраст отца и сына плюс 20 лет на левой чаше

Теперь весы выровнялись. Получилось уравнение 3x ravno 2x plus 20, которое решается легко:

2x + 20 = 3x решение

В начале решения данной задачи через переменную x мы обозначили возраст дочери. Теперь мы нашли значение этой переменной. Дочери 20 лет.

Далее было сказано, что сын двое старше дочери, значит сыну (20 × 2), то есть 40 лет.

Ну и наконец вычислим возраст отца. В задаче было сказано, что он равен сумме возрастов сына и дочери, то есть (20 + 40) лет.

2x + 20 = 3x решение таблица

Вернемся к середине задачи и обратим внимание на один момент. Когда мы положили на весы возраст отца и возраст сына, левая чаша перевесила правую

весы возраст отца и сына

Но мы решили эту проблему, добавив на правую чашу еще 20 лет. В результате весы выровнялись и мы получили равенство 3x ravno 2x plus 20

Но можно было не добавлять к правой чаше эти 20 лет, а вычесть их из левой. Мы получили бы равенство и в таком случае

весы возраст отца и сына минус 20 лет на другой чаше

В этот раз получается уравнение 3x minus 20 ravno 2x. Корень уравнения по прежнему равен 20

3x minus 20 ravno 2x решение

То есть, уравнения 3x ravno 2x plus 20 и 3x minus 20 ravno 2x являются равносильными. А мы помним, что у равносильных уравнений корни совпадают. Если внимательно посмотреть на эти два уравнения, то можно увидеть что второе уравнение получено путем переноса числа 20 из правой части в левую с противоположным знаком. А это действие, как было указано в предыдущем уроке, не меняет корней уравнения.

Также нужно обратить внимание на то, что в начале решения задачи возрасты каждого члена семьи можно было обозначить через другие выражения.

Скажем возраст сына обозначить через x и поскольку он двое старше дочери, то возраст дочери обозначить через x вторых (понимай сделать её младше сына в два раза). А возраст отца поскольку он является суммой возрастов сына и дочери обозначить через выражение x plus x na 2. Ну и напоследок для построения логически правильного уравнения, к возрасту сына нужно  прибавить число 20, ведь отец старше на двадцать лет. В итоге получается совсем другое уравнение x plus 20 ravno x plus x na 2. Решим это уравнение

x plus 20 ravno x plus x na 2 решение

Как видно ответы к задаче не поменялись. Сыну по прежнему 40 лет. Дочери по прежнему сорок вторых лет, а отцу 40 + 20 лет.

Другими словами, задача может решаться различными методами. Поэтому не следует отчаиваться, что не получается решить ту или иную задачу. Но нужно иметь ввиду, что существует наиболее простые пути решения задачи. К центру города можно доехать различными маршрутами, но всегда существует наиболее удобный, быстрый и безопасный маршрут.


Примеры решения задач

Задача 1. В двух пачках всего 30 тетрадей. Если бы из первой пачки переложили во вторую 2 тетради, то в первой пачке стало бы вдвое больше тетрадей, чем во второй. Сколько тетрадей было в каждой пачке?

Решение

Обозначим через x количество тетрадей, которое было в первой пачке. Если всего тетрадей было 30, а переменная x это количество тетрадей из первой пачке, то количество тетрадей во второй пачке будет обозначаться через выражение 30 − x. То есть, от общего количества тетрадей вычитаем количество тетрадей из первой пачки и тем самым получаем количество тетрадей из второй пачки.

таблица количество тетрадей в первой и во второй пачке

Далее сказано, что если переложить 2 тетради из первой пачки во вторую, то в первой пачке окажется вдвое больше тетрадей. Итак, снимем с первой пачки две тетради

количество тетрадей в первой и во второй пачке строим уравнение 2

и добавим эти две тетради во вторую пачку

количество тетрадей в первой и во второй пачке строим уравнение 3

Выражения из которых мы будем составлять уравнение теперь принимают следующий вид:

таблица 2 количество тетрадей в первой и во второй пачке

Попробуем составить уравнение из имеющихся выражений. Положим на весы обе пачки тетрадей

весы количество тетрадей в первой и во второй пачке

Левая чаша тяжелее правой. Это потому, что в условии задачи сказано, что после того как из первой пачки взяли две тетради и положили их во вторую, количество тетрадей в первой пачке стало вдвое больше, чем во второй.

Чтобы выровнять весы и получить уравнение, увеличим правую часть вдвое. Для этого умножим её на 2

весы количество тетрадей в первой и во второй пачке рис 2

Получается уравнение x minus 2 ravno 2 na 0 minus x plus 2. Решим данное уравнение:

x minus 2 ravno 2 na 0 minus x plus 2 решение

Первую пачку мы обозначали через переменную x. Теперь мы нашли её значение. Переменная x равна 22. Значит в первой пачке было 22 тетради.

А вторую пачку мы обозначали через выражение 30 − x и поскольку значение переменой x теперь известно, то можно вычислить количество тетрадей во второй пачке. Оно равно 30 − 22, то есть 8 шт.


Задача 2. Два человека чистили картофель. Один очищал в минуту две картофелины, а второй — три картофелины. Вместе они очистили 400 шт. Сколько времени работал каждый, если второй проработал на 25 минут больше первого?

Решение

Обозначим через x время работы первого человека. Поскольку второй человек проработал на 25 минут больше первого, то его время будет обозначаться через выражение x plus 25

Первый рабочий в минуту очищал 2 картофелины, и поскольку он работал x минут, то всего он очистил 2x картофелин.

Второй человек в минуту очищал три картофелины, и поскольку он работал x plus 25 минут, то всего он очистил 3 na x plus 25 картофелин.

Вместе они очистили 400 картофелин

таблица два человека очистили картофелины

Из имеющихся компонентов составим и решим уравнение. В левой части уравнения будут картофелины, очищенные каждым человеком, а в правой части их сумма:

2x plus 3x plus 75 ravno 400 решение

В начале решения данной задачи через переменную x мы обозначили время работы первого человека. Теперь мы нашли значение этой переменной. Первый человек работал 65 минут.

А второй человек работал x plus 25 минут, и поскольку значение переменной x теперь известно, то можно вычислить время работы второго человека — оно равно 65 + 25, то есть 90 мин.


Задача из Учебника по алгебре Андрея Петровича Киселева. Из сортов чая составлена смесь в 32 кг. Килограмм первого сорта стоит 8 руб., а второго сорта 6 руб. 50 коп. Сколько килограммов взято того и другого сорта, если килограмм смеси стоит (без прибыли и убытка) 7 руб. 10 коп.?

Решение

Обозначим через x массу чая первого сорта. Тогда масса чая второго сорта будет обозначаться через выражение 32 − x

таблица 1 масса чая первого и второго сорта

Килограмм чая первого сорта стоит 8 руб. Если эти восемь рублей умножить на количество килограмм чая первого сорта, то можно будет узнать во сколько рублей обошлись x кг чая первого сорта.

А килограмм чая второго сорта стоит 6 руб. 50 коп. Если эти 6 руб. 50 коп. умножить на 32 − x, то можно узнать во сколько рублей обошлись 32 − x кг чая второго сорта.

В условии сказано, что килограмм смеси стоит 7 руб. 10 коп. Всего же было приготовлено 32 кг смеси. Умножим 7 руб. 10 коп. на 32 мы сможем узнать сколько стоит 32 кг смеси.

Выражения из которых мы будем составлять уравнение теперь принимают следующий вид:

таблица 2 стоимость чая первого и второго сорта

Попробуем составить уравнение из имеющихся выражений. Положим на левую чашу весов стоимость смесей чая первого и второго сорта, а на правую чашу положим стоимость 32 кг смеси, то есть общую стоимость смеси, в составе которой оба сорта чая:

весы стоимость чая первого и второго сорта

Получили уравнение 8x plus 650 na 32 minus x ravno 710 na 32. Решим его:

8x plus 650 na 32 minus x ravno 710 na 32 решение

В начале решения данной задачи через переменную x мы обозначили массу чая первого сорта. Теперь мы нашли значение этой переменной. Переменная x равна 12,8. Значит для приготовления смеси было взято 12,8 кг чая первого сорта.

А через выражение 32 − x мы обозначили массу чая второго сорта и поскольку значение переменой x теперь известно, то можно вычислить массу чая второго сорта. Оно равно 32 − 12,8 то есть 19,2. Значит для приготовления смеси было взято 19,2 кг чая второго сорта.


Задача 3. Велосипедист проехал некоторое расстояние со скоростью 8 км/ч. Возвратиться он должен был другой дорогой, которая была на 3 км длиннее первой, и, хотя возвращаясь, ехал со скоростью 9 км/ч, он употребил времени на семь целых одна вторая минут более. Как длинны были дороги?

Решение

Некоторые задачи могут затрагивать темы, которые человек возможно не изучал. Данная задача относится к такому кругу задач. В ней затрагиваются понятия расстояния, скорости и времени. Соответственно, чтобы решить подобную задачу, нужно иметь представление о тех вещах, о которых говорится в задаче. В нашем случае, надо знать что представляет собой расстояние, скорость и время.

В задаче нужно найти расстояния двух дорог. Мы должны составить уравнение, которое позволит вычислить эти расстояния.

Вспомним, как взаимосвязаны расстояние, скорость и время. Каждая из этих величин может быть описана с помощью буквенного уравнения:

расстояние скорость время в картинке

Правую часть одного из этих уравнений мы будем использовать для составления своего уравнения. Чтобы узнать какую именно, нужно вернуться к тексту задачи и поискать за что можно зацепиться

задача на движение велосипедиста текст на картинке

Зацепиться можно за момент, где велосипедист на обратном пути употребил времени на семь целых одна вторая минут более. Эта подсказка указывает нам, что можно воспользоваться уравнением t ravno s na v , а именно его правой частью. Это позволит нам составить уравнение, которое содержит переменную S.

Итак, обозначим длину первой дороги через S. Этот путь велосипедист проехал со скоростью 8 км/ч. Время за которое он преодолел этот путь будет обозначаться выражением s na 8, поскольку время это отношение пройденного расстояния к скорости

s na 8 картинка

Обратная дорога для велосипедиста была длиннее на 3 км. Поэтому её расстояние будет обозначаться через выражение + 3. Эту дорогу велосипедист проехал со скоростью 9 км/ч. А значит время за которое он преодолел этот путь будет обозначаться выражением s plus 3 na 9.

s plus 3 na 9 картинка

Теперь составим уравнение из имеющихся выражений

весы два расстояния на чашах

Правая чаша тяжелее левой. Это потому, что в задаче сказано, что на обратную дорогу велосипедист затратил времени на семь целых одна вторая больше.

Чтобы уравнять весы прибавим к левой части эти самые семь целых одна вторая минут. Но сначала переведем минуты в часы, поскольку в задаче скорость измеряется в километрах в час, а не в метрах в минуту.

Чтобы семь целых одна вторая минут перевести в часы, нужно разделить их на 6075 разделить на 60 решение в дробном виде

семь целых одна вторая минут составляют одна восьмая2 часа. Прибавляем эти одна восьмая2 часа к левой части уравнения:

весы два расстояния на чашах равенство

Получается уравнение s na 8 plus 1 na 8 ravno s plus 3 na 9 . Решим данное уравнение. Чтобы избавиться от дробей, обе части части можно умножить на 72. Далее пользуясь известными тождественными преобразованиями, найдем значение переменной S

s na 8 plus 1 na 8 ravno s plus 3 na 9 решение

Через переменную S мы обозначали расстояние первой дороги. Теперь мы нашли значение этой переменной. Переменная S равна 15. Значит расстояние первой дороги составляет 15 км.

А расстояние второй дороги мы обозначили через выражение + 3, и поскольку значение переменной S теперь известно, то можно вычислить расстояние второй дороги. Это расстояние равно сумме 15 + 3, то есть 18 км.


Задача 4. По шоссе идут две машины с одной и той же скоростью. Если первая увеличит скорость на 10 км/ч, а вторая уменьшит скорость на 10 км/ч, то первая за 2 ч пройдет столько же, сколько вторая за 3 ч. С какой скоростью идут автомашины?

Решение

Обозначим через v скорость каждой машины. Далее в задаче приводятся подсказки: скорость первой машины увеличить на 10 км/ч, а скорость второй — уменьшить на 10 км/ч. Воспользуемся этой подсказкой

v plus 10 v minus 10

Далее говорится, что при таких скоростях (увеличенных и уменьшенных на 10 км/ч) первая машина пройдет за 2 часа столько же расстояния сколько вторая за 3 часа. Фразу «столько же» можно понимать как «расстояние, пройденное первой машиной, будет равно расстоянию, пройденному второй машиной».

Расстояние как мы помним, определяется по формуле формула расстояние для вставки в строку. Нас интересует правая часть этого буквенного уравнения — она позволит нам составить уравнение, содержащее переменную v.

Итак, при скорости v + 10 км/ч первая машина пройдет 2(v+10) км, а вторая пройдет 3(v − 10) км. При таком условии машины пройдут одинаковые расстояния, поэтому для получения уравнения достаточно соединить эта два выражения знаком равенства. Тогда получим уравнение 2v plus 20 ravno 3v minus 30. Решим его:

2v plus 20 ravno 3v minus 30 step 1

В условии задачи было сказано, что машины идут с одинаковой скоростью. Мы обозначили эту скорость через переменную v. Теперь мы нашли значение этой переменной. Переменная v равна 50. Значит скорость обеих машин составляла 50 км/ч.


Задача 5. За 9 ч по течению реки теплоход проходит тот же путь, что за 11 ч против течения. Найдите собственную скорость теплохода, если скорость течения реки 2 км/ч.

Решение

Обозначим через v собственную скорость теплохода. Скорость течения реки равна 2 км/ч. По течению реки скорость теплохода будет составлять v + 2 км/ч, а против течения — (v − 2) км/ч.

В условии задачи сказано, что за 9 ч по течению реки теплоход проходит тот же путь, что за 11 ч против течения. Фразу «тот же путь» можно понимать как «расстояние, пройденное теплоходом по течению реки за 9 часов, равно расстоянию, пройденному теплоходом против течения реки за 11 часов». То есть, расстояния будут одинаковыми.

Расстояние определяется по формуле формула расстояние для вставки в строку. Воспользуемся правой частью этого буквенного уравнения для составления своего уравнения.

Итак, за 9 часов по течению реки теплоход пройдет 9(v + 2) км, а за 11 часов против течения — 11(v − 2) км. Поскольку оба выражения описывают одно и то же расстояние, приравняем первое выражение ко второму. В результате получим уравнение 9v plus 18 ravno 11v minus 22. Решим его:

9v plus 18 ravno 11v minus 22 решение

Значит собственная скорость теплохода составляет 20 км/ч.

При решении задач полезной привычкой является заранее определить на каком множестве ищется для неё решение.

Допустим, что в задаче требовалось найти время, за которое пешеход преодолеет указанный путь. Мы обозначили время через переменную t, далее составили уравнение, содержащее эту переменную и нашли её значение.

Из практики мы знаем, что время движения объекта может принимать как целые значения, так и дробные, например 2 ч, 1,5 ч, 0,5 ч. Тогда можно сказать, что решение данной задачи ищется на множестве рациональных чисел Q, поскольку каждое из значений 2 ч, 1,5 ч, 0,5 ч может быть представлено в виде дроби.

Поэтому после того, как неизвестную величину обозначили через переменную, полезно указать к какому множеству эта величина принадлежит. В нашем примере время t принадлежит множеству рациональных чисел Q

tQ

Ещё можно ввести ограничение для переменной t, указав что она может принимать только положительные значения. Действительно, если объект затратил на путь определенное время, то это время не может быть отрицательным. Поэтому рядом с выражением ∈ Q укажем, что её значение должно быть больше нуля:

∈ R, t > 0

Если решив уравнение, мы получим отрицательное значение для переменной t, то можно будет сделать вывод, что задача решена неправильно, поскольку это решение не будет удовлетворять условию ∈ Q, > 0.

Ещё пример. Если бы мы решали задачу в которой требовалось найти количество человек для выполнения той или иной работы, то это количество мы обозначили бы через переменную x. В такой задаче решение искалось бы на множестве натуральных чисел

x ∈ N

Действительно, количество человек является целым числом, например 2 человека, 3 человека, 5 человек. Но никак не 1,5 (один целый человек и половина человека) или 2,3 (два целых человека и еще три десятых человека).

Здесь можно было бы указать, что количество человек должно быть больше нуля, но числа входящие во множество натуральных чисел N сами по себе являются положительными и большими нуля. В этом множестве нет отрицательных чисел и числа 0. Поэтому выражение x > 0 можно не писать.


Задача 6. Для ремонта школы прибыла бригада в которой было в 2,5 раза больше маляров, чем плотников. Вскоре прораб включил в бригаду еще четырех маляров, а двух плотников перевел на другой объект. В результате маляров в бригаде оказалось в 4 раза больше чем плотников. Сколько маляров и сколько плотников было в бригаде первоначально

Решение

Обозначим через x плотников, прибывших на ремонт первоначально.

Количество плотников является целым числом, большим нуля. Поэтому укажем, что x принадлежит множество натуральных чисел

N

Маляров было в 2,5 раза больше, чем плотников. Поэтому количество маляров будет обозначаться как 2,5x.

количество плотников x и количество маляров больших в два с половиной раза

Далее говорится, что прораб включил в бригаду еще четырех маляров, а двух плотников перевел на другой объект. Сделаем для своих выражений тоже самое. Уменьшим количество плотников на 2

кол-во плотников уменьшено на 2

А количество маляров увеличим на 4

кол-во плотников увеличено на 4

Теперь количество плотников и маляров будут обозначаться через следующие выражения:

таблица новое количество плотников и маляров

Попробуем составить уравнение из имеющихся выражений:

весы количество плотников и маляров

Правая чаша больше, поскольку после включения в бригаду ещё четырёх маляров, и перемещения двух плотников на другой объект, количество маляров в бригаде оказалось в 4 раза больше чем плотников. Чтобы уравнять весы, нужно левую чашу увеличить в 4 раза:

весы количество плотников и маляров равные чаши

Получили уравнение 4x minus 8 ravno 25x plus 4. Решим его:

4x minus 8 ravno 25x plus 4 решение

Через переменную x было обозначено первоначальное количество плотников. Теперь мы нашли значение этой переменной.  Переменная x равна 8. Значит 8 плотников было в бригаде первоначально.

А количество маляров было обозначено через выражение 2,5x и поскольку значение переменной x теперь известно, то можно вычислить количество маляров — оно равно 2,5 × 8, то есть 20.

Возвращаемся к началу задачи и удостоверяемся, что соблюдается условие ∈ N. Переменная x равна 8, а элементы множества натуральных чисел N это все числа, начинающиеся с 1, 2, 3 и так далее до бесконечности. В это же множество входит число 8, которое мы нашли.

N

Тоже самое можно сказать о количестве маляров. Число 20 принадлежит множеству натуральных чисел:

20  N


Для понимания сути задачи и правильного составления уравнения, вовсе необязательно использовать модель весов с чашами. Можно использовать и другие модели: отрезки, таблицы, схемы. Можно придумать свою модель, которая хорошо описывала бы суть задачи.

Задача 9. Из бидона отлили 30% молока. В результате в нем осталось 14 л. Сколько литров молока было в бидоне первоначально?

Решение

Искомое значение это первоначальное число литров в бидоне. Изобразим число литров в виде линии и подпишем эту линию как X

x литров в бидоне рисунок 1

Сказано, что из бидона отлили 30% молока. Выделим на рисунке приблизительно 30%

x литров в бидоне рисунок 2

Процент по определению есть одна сотая часть чего-то. Если 30% молока отлили, то остальные 70% остались в бидоне. На эти 70% приходятся 14 литров, указанные в задаче. Выделим на рисунке оставшиеся 70%

x литров в бидоне рисунок 3

Теперь можно составить уравнение. Вспомним, как находить процент от числа. Для этого общее количество чего-то делят на 100 и полученный результат умножают на искомое количество процентов. Замечаем, что 14 литров, составляющих 70% можно получить таким же образом: первоначальное число литров X разделить на 100 и полученный результат умножить на 70. Всё это приравнять к числу 14

x na 100 na 70 ravno 14

Или получить более простое уравнение: 70% записать как 0,70, затем умножить на X и приравнять это выражение к 14

x na 100 na 70 ravno 14 в другом виде решение

Значит первоначально в бидоне было 20 литров молока.


Задача 9. Взяли два сплава золота и серебра. В одном количество этих металлов находится в отношении 1 : 9, а в другом 2 : 3. Сколько нужно взять каждого сплава, чтобы получить 15 кг нового сплава, в котором золото и серебро относилось бы как 1 : 4?

Решение

Попробуем сначала узнать сколько золота и серебра будет содержаться в 15 кг нового сплава. В задаче сказано, что содержание этих металлов должно быть в отношении 1 : 4, то есть на одну часть сплава должно приходиться золото, а на четыре части — серебро. Тогда всего частей в сплаве будет 1 + 4 = 5, а масса одной части будет 15 : 5 = 3 кг.

Определим сколько золота будет содержаться в 15 кг сплава. Для этого 3 кг умножим на количество частей золота:

3 кг × 1 = 3 кг

Определим сколько серебра будет содержаться в 15 кг сплава:

3 кг × 4 = 12 кг

Значит сплав массой 15 кг будет содержать 3 кг золота и 12 кг серебра. Теперь вернёмся к исходным сплавам. Использовать нужно каждый из них. Обозначим через x массу первого сплава, а массу второго сплава можно обозначить через 15 − x

табличка x и 15 minus x

Выразим в процентах все отношения, которые даны в задаче и заполним ими следующую таблицу:

таблица три сплава рисунок 1

В первом сплаве золото и серебро находятся в отношении 1 : 9. Тогда всего частей будет 1 + 9 = 10. Из них золота будет 1 на 10 в процентах, а серебра 9 на 10 в процентах.

Перенесём эти данные в таблицу. 10% занесём в первую строку в графу «процент золота в сплаве», 90% также занесём в первую строку графу «процент серебра в сплаве», а в последнюю графу «масса сплава» занесём переменную x, поскольку так мы обозначили массу первого сплава:

таблица три сплава рисунок 2

Аналогично поступаем со вторым сплавом. Золото и серебро в нём находятся в отношении 2 : 3. Тогда всего частей будет 2 + 3 = 5. Из них золота будет 2 на 5 в процентах, а серебра 3 на 5 в процентах.

Перенесём эти данные в таблицу. 40% занесем во вторую строку в графу «процент золота в сплаве», 60% также занесём во вторую строку графу «процент серебра в сплаве», а в последнюю графу «масса сплава» занесём выражение 15 − x, поскольку так мы обозначили массу второго сплава:

таблица три сплава рисунок 3

Заполним последнюю строку. Полученный сплав массой 15 кг будет содержать 3 кг золота, что составляет 3 на 15 в процентах сплава, а серебра будет 12 на 15 в процентах сплава. В последнюю графу записываем массу полученного сплава 15

таблица три сплава рисунок 4

Теперь по данной таблице можно составить уравнения. Вспоминаем задачи на концентрацию, сплавы и смеси. Если мы отдельно сложим золото обоих сплавов и приравняем эту сумму к массе золота полученного сплава, то сможем узнать чему равно значение x.

Далее для удобства проценты будем выражать в десятичной дроби.

В первом сплаве золота было 0,10x, а во втором сплаве золота было 0,40(15 − x). Тогда в полученном сплаве масса золота будет суммой масс золота первого и второго сплавов и эта масса составляет 20% от нового сплава. А 20% от  нового сплава это 3 кг золота, вычисленные нами ранее. В результате получаем уравнение 0,10+ 0.40(15 − x) = 3. Решим это уравнение:

010x plus 040 na 15 - x ravno 3 решение

Изначально через x мы обозначили массу первого сплава. Теперь мы нашли значение этой переменной. Переменная x равна 10. А массу второго сплава мы обозначили через 15 − x, и поскольку значение переменной x теперь известно, то можно вычислить массу второго сплава, она равна 15 − 10 = 5 кг.

Значит для получения нового сплава массой 15 кг в котором золото и серебро относились бы как 1 : 4, нужно взять 10 кг первого и 5 кг второго сплава.

Уравнение можно было составить, воспользовавшись и вторым столбцом получившейся таблицы. Тогда мы получили бы уравнение 0,90+ 0.60(15 − x) = 12. Корень этого уравнения тоже равен 10

090x plus 060 na 15 minus x ravno 12 решение


Задача 10. Имеется руда из двух пластов с содержанием меди в 6% и 11%. Сколько надо взять бедной руды, чтобы получить при смешивании с богатой 20 тонн с содержанием меди 8%?

Решение

Обозначим через x массу бедной руды. Поскольку нужно получить 20 тонн руды, то богатой руды будет взято 20 − x. Поскольку содержание меди в бедной руде составляет 6%, то в x тоннах руды будет содержаться 0,06тонн меди. В богатой руде содержание меди составляет 11%, а в 20 − тоннах богатой руды будет содержаться 0,11(20 − x) тонн меди.

В получившихся 20 тоннах руды содержание меди должно составлять 8%. Значит в 20 тоннах руды меди будет содержаться 20 × 0,08 = 1,6 тонн.

Сложим выражения 0,06x и 0,11(20 − x) и приравняем эту сумму к 1,6. Получим уравнение  0,06x + 0,11(20 − x) = 1,6

006x plus 011 na 20 minus x ravno 16 рисунок

Решим данное уравнение:

006x plus 011 na 20 minus x ravno 16 решение

Значит для получения 20 тонн руды с содержанием меди 8%, нужно взять 12 тонн бедной руды. Богатой же будет взято 20 − 12 = 8 тонн.


Задача 11. Увеличив среднюю скорость с 250 до 300 м/мин спортсменка стала пробегать дистанцию на 1 мин быстрее. Какова длина дистанции?

Решение

Длину дистанции (или расстояние дистанции) можно описать следующим буквенным уравнением:

дистанция формула рисунок к задаче

Воспользуемся правой частью этого уравнения для составления своего уравнения. Изначально спортсменка пробегала дистанцию со скоростью 250 метров в минуту. При такой скорости длина дистанции будет описываться выражением 250t

Затем спортсменка увеличила свою скорость до 300 метров в минуту. При такой скорости длина дистанции будет описываться выражением 300t

Заметим, что длина дистанции это величина постоянная. От того, что спортсменка увеличит скорость или уменьшит её, длина дистанции останется неизменной.

Это позволяет нам приравнять выражение 250t к выражению 300t, поскольку оба выражения описывают длину одной и той же дистанции

250t = 300t

Но в задаче сказано, что при скорости 300 метров в минуту спортсменка стала пробегать дистанцию на 1 минуту быстрее. Другими словами, при скорости 300 метров в минуту, время движения уменьшится на единицу. Поэтому в уравнении 250= 300t в правой части время нужно уменьшить на единицу:

250t ravno 300 t - 1 решение

Получилось простейшее уравнение. Решим его:

250t ravno 300 t - 1 решение полное

При скорости 250 метров в минуту спортсменка пробегает дистанцию за 6 минут. Зная скорость и время, можно определить длину дистанции:

S = 250 × 6 = 1500 м

А при скорости 300 метров в минуту спортсменка пробегает дистанцию за − 1, то есть за 5 минут. Как было сказано ранее длина дистанции не меняется:

= 300 × 5 = 1500 м


Задача 12. Всадник догоняет пешехода, находящегося впереди него на 15 км. Через сколько часов всадник догонит пешехода, если каждый час первый проезжает по 10 км, а второй проходит только по 4 км?

Решение

Данная задача является задачей на движение. Её можно решить, определив скорость сближения и разделив изначальное расстояние между всадником и пешеходом на эту скорость.

Скорость сближения определяется вычитанием меньшей скорости из большей:

10 км/ч − 4 км/ч = 6 км/ч (скорость сближения)

С каждым часом расстояние в 15 километров будут сокращаться на 6 км. Чтобы узнать, когда оно сократится полностью (когда всадник догонит пешехода), нужно 15 разделить на 6

15 : 6 = 2,5 ч

2,5 ч это два целых часа и половина часа. А половина часа это 30 минут. Значит всадник догонит пешехода через 2 часа 30 минут.

всадник догоняет пешехода рисунок 1

Решим эту задачу с помощью уравнения.

Будем считать, что пешеход и всадник вышли в путь из одного и того же места. Пешеход вышел раньше всадника и успел преодолеть 15 км

всадник догоняет пешехода рисунок 2

После этого вслед за ним в путь вышел всадник со скоростью 10 км/ч. А скорость пешехода составляет только 4 км/ч. Это значит, что всадник через некоторое время догонит пешехода. Это время нам нужно найти.

Когда всадник догонит пешехода это будет означать, что они вместе прошли одинаковое расстояние. Расстояние, пройденное всадником и пешеходом описывается следующим уравнением:

дистанция формула рисунок к задаче

Воспользуемся правой частью этого уравнения для составления своего уравнения.

Расстояние, пройденное всадником, будет описываться выражением 10t. Поскольку пешеход вышел в путь раньше всадника и успел преодолеть 15 км, то расстояние пройденное им будет описываться выражением 4t + 15.

На момент, когда всадник догонит пешехода, оба они пройдут одинаковое расстояние. Это позволяет нам приравнять расстояния, пройденные всадником и пешеходом:

10t ravno 4t plus 15

Получилось простейшее уравнение. Решим его:

10t ravno 4t plus 15 решение


Задачи для самостоятельного решения

Задача 1. Из одного города в другой пассажирский поезд приезжает на 45 мин быстрее товарного. Вычисли расстояние между городами, если скорость пассажирского поезда 48 км/ч, а товарного 36 км/ч.

Решение

Скорости поездов в данной задаче измеряются в километрах в час. Поэтому 45 мин, указанные в задаче, переведем в часы. 45 мин это 0,75 ч

Обозначим время, за которое товарный поезд приезжает в город, через переменную t. Поскольку пассажирский поезд приезжает в этот город на 0,75 ч быстрее, то время его движения будет обозначаться через выражение t − 0,75

Пассажирский поезд преодолел 48(t − 0.75) км, а товарный 36t км. Поскольку речь идет об одном и том же расстоянии, приравняем первое выражение ко второму. В результате получим уравнение 48(t − 0.75) = 36t. Решим его:

Теперь вычислим расстояние между городами. Для этого скорость товарного поезда (36 км/ч) умножим на время его движения t. Значение переменной t теперь известно — оно равно трём часам

36 × 3 = 108 км

Для вычисления расстояния можно воспользоваться и скоростью пассажирского поезда. Но в этом случае значение переменной t необходимо уменьшить на 0,75 поскольку пассажирский поезд затратил времени на 0,75 ч меньше

48 × (3 − 0,75) = 144 − 36 = 108 км

Ответ: расстояние между городами равно 108 км.

Задача 2. Из двух городов, расстояние между которыми 150 км, одновременно навстречу друг другу выехали два автомобиля. Скорость одного автомобиля 65 км/ч, а второго 60 км/ч. Через сколько часов они встретились?

Решение

Пусть t время через которое автомобили встретились. Тогда первый автомобиль на момент встречи проедет 65t км, а второй 60t км. Сложим эти расстояния и приравняем к 150. Получим уравнение 65+ 60= 150

Значение переменной t равно 1,2. Значит автомобили встретились через 1,2 часа.

Ответ: автомобили встретились через 1,2 часа.

Задача 3. В трех цехах завода всего 685 рабочих. Во втором цехе рабочих в три раза больше, чем в первом, а в третьем — на 15 рабочих меньше, чем во втором цехе. Сколько рабочих в каждом цехе?

Решение

Пусть x рабочих было в первом цехе. Во втором цехе было в три раза больше, чем в первом, поэтому количество рабочих во втором цехе можно обозначить через выражение 3x. В третьем цехе было на 15 рабочих меньше, чем во втором. Поэтому количество рабочих в третьем цехе можно обозначить через выражение 3x − 15.

В задаче сказано, что всего рабочих было 685. Поэтому можно сложить выражения x, 3x, 3x − 15 и приравнять эту сумму к числу 685. В результате получим уравнение x + 3x + (3x − 15) = 685

Через переменную x было обозначено количество рабочих в первом цехе. Теперь мы нашли значение этой переменной, оно равно 100. Значит в первом цехе было 100 рабочих.

Во втором цехе было 3x рабочих, то есть 3 × 100 = 300. А в третьем цехе было 3x − 15, то есть 3 × 100 − 15 = 285

Ответ: в первом цехе было 100 рабочих, во втором — 300, в третьем — 285.

Задача 4. Две ремонтные мастерские в течение недели должны отремонтировать по плану 18 моторов. Первая мастерская выполнила план на 120%, а вторая — на 125%, поэтому в течение недели отремонтировали 22 мотора. Какой план по ремонту моторов на неделю имела каждая мастерская?

Решение

Пусть x моторов должна была отремонтировать первая мастерская. Тогда вторая мастерская должна была отремонтировать 18 − x моторов.

Поскольку первая мастерская выполнила свой план на 120%, это означает что она отремонтировала 1,2x моторов . А вторая мастерская выполнила свой план на 125%, значит она отремонтировала 1,25(18 − x) моторов.

В задаче сказано, что было отремонтировано 22 мотора. Поэтому можно сложить выражения 1,2x и 1,25(18 − x) , затем приравнять эту сумму к числу 22. В результате получим уравнение