Тождественные преобразования многочленов

Возведение двучлена в степень

Двучлен — это многочлен, состоящий из двух членов. В прошлых уроках мы возводили двучлен во вторую и третью степень, тем самым получили формулы сокращенного умножения:

(a + b)2 = a+ 2ab + b2

(a + b)3 = a+ 3a2b + 3abb3

Но двучлен можно возводить не только во вторую и третью степень, но и в четвёртую, пятую или более высокую степень.

К примеру, возведём двучлен a + b в четвертую степень:

(a + b)4

Представим это выражение в виде произведения двучлена a + b и куба этого же двучлена

(a + b)(a + b)3

Сомножитель (a + b)3 можно заменить на правую часть формулы куба суммы двух выражений. Тогда получим:

(a + b)(a+ 3a2b + 3abb3)

А это обычное перемножение многочленов. Выполним его:

тпм рис 1

То есть при возведении двучлена a + b в четвертую степень получается многочлен a+ 4a3b + 6a2b+ 4abb4

(a + b)4 = a+ 4a3b + 6a2b+ 4abb4

Возведение двучлена a + b в четвертую степень можно выполнить ещё и так: представить выражение (a + b)4 в виде произведения степеней (a + b)2(a + b)2

(a + b)2(a + b)2

Но выражение (a + b)2 равно a+ 2ab + b2. Заменим в выражении (a + b)2(a + b)2 квадраты суммы на многочлен a+ 2ab + b2

(a+ 2ab + b2)(a+ 2ab + b2)

А это опять же обычное перемножение многочленов. Выполним его. У нас получится тот же результат, что и раньше:

тпм рис 2


Возведение трёхчлена в степень

Трёхчлен — это многочлен, состоящий из трёх членов. Например, выражение a + b + c является трёхчленом.

Иногда может возникнуть задача возвести трёхчлен в степень. Например, возведём в квадрат трехчлен a + b + c

(a + b + c)2

Два члена внутри скобок можно заключить в скобки. К примеру, заключим сумму b в скобки:

((a + b) + c)2

В этом случае сумма a + b будет рассматриваться как один член. Тогда получается, что в квадрат мы возводим не трёхчлен, а двучлен. Сумма a + b будет первым членом, а член c — вторым членом. А как возводить в квадрат двучлен мы уже знаем. Для этого можно воспользоваться формулой квадрата суммы двух выражений:

(a + b)2 = a+ 2ab + b2

Применим эту формулу к нашему примеру:

тпм рис 3

Таким же способом можно возвести в квадрат многочлен, состоящий из четырёх и более членов. Например, возведем в квадрат многочлен a + b + c + d

(a + b + c + d)2

Представим многочлен в виде суммы двух выражений: a + b и c + d. Для этого заключим их в скобки:

((a + b) + (c + d))2

Теперь воспользуемся формулой квадрата суммы двух выражений:

тпм рис 4


Выделение полного квадрата из квадратного трёхчлена

Ещё одно тождественное преобразование, которое может пригодиться при решении задач это выделение полного квадрата из квадратного трёхчлена.

Квадратным трехчленом называют трёхчлен второй степени. Например, следующие трехчлены являются квадратными:

дм рис 7

Идея выделения полного квадрата из таких трехчленов заключается в том, чтобы представить исходный квадратный трехчлен в виде выражения (a + b)c, где (a + b)2 полный квадрат, а c некоторое числовое или буквенное выражение.

Например, выделим полный квадрат из трёхчлена 4x+ 16+ 19.

Для начала нужно построить выражение вида a+ 2ab b2. Строить мы его будем из трехчлена 4x+ 16+ 19. Для начала определимся какие члены будут играть роли переменных a и b

Роль переменной a будет играть член 2x, поскольку первый член трехчлена 4x+ 16+ 19, а именно 4x2 получается если 2x возвести в квадрат:

(2x)2 = 4x2

Итак, переменная a равна 2x

a = 2x

Теперь возвращаемся к исходному трёхчлену и сразу обращаем внимание на выражение 16x. Это выражение является удвоенным произведением первого выражения a (в нашем случае это 2x) и второго пока неизвестного нам выражения b. Временно поставим на его место вопросительный знак:

2 × 2x × ? = 16x

Если внимательно посмотреть на выражение 2 × 2x × ? = 16x, то интуитивно станет понятно, что членом b в данной ситуации является число 4, поскольку выражение 2 × 2x равно 4x, и чтобы получить 16x нужно домножить 4x на 4.

2 × 2x × 4 = 16x

Отсюда делаем вывод, что переменная b равна 4

b = 4

Значит, нашим полным квадратом будет выражение (2x)+ 2 × 2x × 4 + 42

Теперь у нас всё готово для выделения полного квадрата из трёхчлена 4x+ 16+ 19.

Итак, возвратимся к исходному трехчлену 4x+ 16+ 19 и попробуем аккуратно внедрить в него полученный нами полный квадрат (2x)+ 2 × 2× 4 + 42

4x+ 16+ 19 =

Вместо 4x2 записываем (2x)2

4x+ 16+ 19 = (2x)2

Далее вместо 16x записываем удвоенное произведение, а именно 2 × 2x × 4

4x+ 16+ 19 = (2x)2 + 2 × 2x × 4

Далее прибавляем квадрат второго выражения:

4x+ 16+ 19 = (2x)2 + 2 × 2x × 4 + 42

А член 19 пока переписываем как есть:

4x+ 16x + 19 = (2x)2 + 2 × 2x × 4 + 42 + 19

Теперь обратим внимание на то, что полученный нами многочлен (2x)+ 2 × 2× 4 + 4+ 19 не тождественен изначальному трёхчлену 4x+ 16+ 19. Убедиться в этом можно приведя многочлен (2x)+ 2 × 2× 4 + 4+ 19 к стандартному виду:

(2x)+ 2 × 2× 4 + 4+ 19 = 4x+ 16x + 42 + 19

Видим, что получается многочлен 4x+ 16+ 4+ 19, а должен был получиться 4x+ 16+ 19. Это по причине того, что член 42 был искусственно внедрён в изначальный трёхчлен с целью организовать полный квадрата из трёхчлена 4x+ 16+ 19.

Чтобы сохранить значение исходного многочлена, нужно после прибавления члена 42 сразу же вычесть его

4x+ 16x + 19 = (2x)2 + 2 × 2x × 4 + 42 − 42 + 19

Теперь выражение (2x)2 + 2 × 2x × 4 + 42 можно свернуть, то есть записать в виде (a + b)2. В нашем случае получится выражение (2+ 4)2

тпм рис 5

4x+ 16x + 19 = (2x)2 + 2 × 2x × 4 + 42 − 42 + 19 = (2x + 4)2 − 42 + 19

Оставшиеся члены −42 и 19 можно сложить. −42 это −16, отсюда −16 + 19 = 3

4x+ 16x + 19 = (2x)2 + 2 × 2x × 4 + 42 − 42 + 19 = (2x + 4)2 − 42 + 19 = (2+ 4)+ 3

Значит, 4x+ 16+ 19 = (2x + 4)2 + 3


Пример 2. Выделить полный квадрат из квадратного трёхчлена x+ 2+ 2

Сначала построим выражение вида a+2ab + b2. Роль переменной a в данном случае играет x, поскольку xx2.

Следующий член исходного трёхчлена 2x перепишем в виде удвоенного произведение первого выражения (это у нас x) и второго выражения b (это будет 1).

2 × x × 1 = 2x

Если b = 1, то полным квадратом будет выражение x+ 2+ 12.

Теперь вернёмся к исходному квадратному трёхчлену и внедрим в него полный квадрата x+ 2+ 12

x+ 2+ 2 = x+ 2+ 12 − 12 + 2 = (+ 1)+ 1

Как и в прошлом примере член b (в данном примере это 1) после прибавления сразу был вычтен с целью сохранения значения исходного трёхчлена.

Рассмотрим следующее числовое выражение:

9 + 6 + 2

Значение этого выражения равно 17

9 + 6 + 2 = 17

Попробуем выделить в этом числовом выражении полный квадрат. Для этого сначала построим выражение вида a+ 2ab b2. Роль переменной a в данном случае играет число 3, поскольку первый член выражения 9 + 6 + 2, а именно 9 можно представить как 32.

Второй член 6 представим в виде удвоенного произведения первого члена 3 и второго 1

2 × 3 × 1 = 6

То есть переменная b будет равна единице. Тогда полным квадратом будет выражение 3+ 2 × 3 × 1 + 12. Внедрим его в исходное выражение:

32 + 6 + 2 = 3+ 2 × 3 × 1 + 12 − 12 + 2

Свернем полный квадрат, а члены −12 и 2 слóжим:

32 + 6 + 2 = 3+ 2 × 3 × 1 + 12 − 12 + 2 = (3 + 1)+ 1

Получилось выражение (3 + 1)+ 2, которое по прежнему равно 17

(3 + 1)2+1 = 42 + 1 = 17

Допустим, у нас имеются квадрат и два прямоугольника. Квадрат со стороной 3 см, прямоугольник со сторонами 2 см и 3 см, а также прямоугольник со сторонами 1 см и 2 см

три пр шаг 2

Вычислим площадь каждой фигуры. Площадь квадрата будет составлять 3= 9 см2, площадь розового прямоугольника — 2 × 3 = 6 см2, площадь сиреневого — 1 × 2 = 2 см2

три пр шаг 3

Запишем сумму площадей этих прямоугольников:

9 + 6 + 2

Это выражение можно понимать как объединение квадрата и двух прямоугольников в единую фигуру:

три пр шаг 4

Тогда получается фигура, площадь которой 17 см2. Действительно, в представленной фигуре содержится 17 квадратов со стороной 1 см.

Попробуем из имеющейся фигуры образовать квадрат. Причем максимально большой квадрат. Для этого будем использовать части от розового и сиреневого прямоугольника.

Чтобы образовать максимально большой квадрат из имеющейся фигуры, можно желтый квадрат оставить без изменений, а половину от розового прямоугольника прикрепить к нижней части желтого квадрата:

три пр шаг 5

Видим, что до образования полного квадрата не хватает еще одного квадратного сантиметра. Его мы можем взять от сиреневого прямоугольника. Итак, возьмем один квадрат от сиреневого прямоугольника и прикрепим его к образуемому большому квадрату:

три пр шаг 6

Теперь внимательно посмотрим к чему мы пришли. А именно на желтую часть фигуры и розовую часть, которая по сути увеличила прежний жёлтый квадрат. Не означает ли это то, что была сторона квадрата равная 3 см, и эта сторона была увеличена на 1 см, что привело в итоге к увеличению площади?

три пр шаг 9

(3 + 1)2

Выражение (3 + 1)2 равно 16, поскольку 3 + 1 = 4, а 42 = 16. Этот же результат можно получить, если воспользоваться формулой квадрата суммы двух выражений:

(3 + 1)2 = 32 + 6 + 1 = 9 + 6 + 1 = 16

Действительно, в образовавшемся квадрате содержится 16 квадратов со стороной 1 см2.

Оставшийся один квадратик от сиреневого прямоугольника можно прикрепить к образовавшемуся большому квадрату. Ведь речь изначально шла о единой фигуре:

три пр шаг 7

(3 + 1)+ 1

Прикрепление маленького квадратика к имеющемуся большому квадрату описывается выражением (3 + 1)+ 1. А это есть выделение полного квадрата из выражения 9 + 6 + 2

9 + 6 + 2 = 3+ 6 + 2 = 3+ 2 × 3 × 1 + 1− 1+ 2 = (3 + 1)+ 1

Выражение (3 + 1)2 + 1, как и выражение 9 + 6 + 2 равно 17. Действительно, площадь образовавшейся фигуры равна 17 см2.

три пр шаг 8


Пример 4. Выполним выделение полного квадрата из квадратного трёхчлена x+ 6x + 8

x+ 6x + 8 = x+ 2 × x × 3 + 3− 3+ 8 = (x + 3)− 1


В некоторых примерах при построении выражения a+ 2ab b2 не бывает возможным сразу определить значения переменных a и b.

Например, выполним выделение полного квадрата из квадратного трёхчлена x+ 3+ 2

Переменной a соответствует x. Второй член 3x нельзя представить в виде удвоенного произведения первого выражения и второго. В этом случае второй член следует умножить на 2, и чтобы значение исходного многочлена не изменилось, сразу же выполнить деление на 2. Выглядеть это будет так:

тпм рис 6

Получившаяся дробь тпм рис 7 и содержит значения переменных a и b. Наша задача суметь правильно их распознать. Перепишем эту дробь в виде произведения множителя 2, дроби три вторых и  переменной x

тпм рис 8

Теперь второй член представлен в виде удвоенного произведения первого выражения и второго. Переменная a, как было сказано ранее, равна x. А переменная b равна дроби три вторых

тпм рис 9

Возвращаемся к нашему примеру и прибавляем квадрат второго выражения, и чтобы значение выражения не изменилось, сразу же вычитаем его:

тпм рис 10

Прибавляем оставшийся член 2

тпм рис 11

Свернём полный квадрат:

тпм рис 12

Оставшийся квадрат второго выражения и число 2 можно сложить. В итоге получим:

тпм рис 13


Пример 6. Выполним выделение полного квадрата из квадратного трёхчлена 9x+ 18x + 7

тпм рис 14


Пример 7. Выполним выделение полного квадрата из квадратного трёхчлена x2 − 10x + 1

В данном трёхчлене первые два члена связаны знаком «минус». В этом случае как и раньше нужно выделить полный квадрат, но это будет квадрат разности. Проще говоря, нужно построить выражение вида a− 2ab + b2.

тпм рис 15


Пример 8. Выполним выделение полного квадрата из квадратного трёхчлена 16x+ 4x + 1

тпм рис 16


Пример 9. Разложить многочлен x+ 6+ 8 на множители при помощи выделения полного квадрата.

Сначала выделим полный квадрат:

тпм рис 17

Получившийся многочлена (+ 3)− 1 является разностью квадратов, поскольку единица может быть представлена в виде 12. Воспользуемся формулой разности квадратов и разложим многочлен (+ 3)− 1 на множители:

тпм рис 18


Задания для самостоятельного решения

Задание 1. Выполните возведение многочлена в степень:
Решение:
Задание 2. Выполните возведение многочлена в степень:
Решение:
Задание 3. Выполните возведение многочлена в степень:
Решение:
Задание 4. Выделите полный квадрат из квадратного трёхчлена:
Решение:
Задание 5. Выделите полный квадрат из квадратного трёхчлена:
Решение:
Задание 6. В следующем выражении попробуйте выделить полный квадрат:
Решение:
Задание 7. В следующем выражении попробуйте выделить полный квадрат:
Решение:
Задание 8. В следующем выражении попробуйте выделить полный квадрат:
Решение:
Задание 9. В следующем выражении попробуйте выделить полный квадрат:
Решение:
Задание 10. В следующем выражении попробуйте выделить полный квадрат:
Решение:

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Деление многочленов

Продолжаем изучать многочлены. В данном уроке мы научимся их делить.

Деление многочлена на одночлен

Чтобы разделить многочлен на одночлен, нужно разделить на этот одночлен каждый член многочлена, затем сложить полученные частные.

Например, разделим многочлен 15x2y+ 10xy+ 5xy3 на одночлен xy. Запишем это деление в виде дроби:

многочлен деление пр 1

Теперь делим каждый член многочлена 15x2y+ 10xy+ 5xy3 на одночлен xy. Получающиеся частные будем складывать:

многочлен деление пр 1 шаг 2

Получили привычное для нас деление одночленов. Выполним это деление:

многочлен деление пр 1 решениеТаким образом, при делении многочлена 15x2y+ 10xy+ 5xy3 на одночлен xy получается многочлен 15xy+ 10y + 5y2.

многочлен деление пр 1 решение шаг 2

При делении одного числа на другое, частное должно быть таким, чтобы при его перемножении с делителем, получалось делимое. Это правило сохраняется и при делении многочлена на одночлен.

В нашем примере произведение полученного многочлена 15xy+ 10+ 5y2 и делителя xy должно быть равно многочлену 15x2y+ 10xy+ 5xy3, то есть исходному делимому. Проверим так ли это:

(15xy+ 10+ 5y2)xy = 15x2y+ 10xy+ 5xy3

Деление многочлена на одночлен очень похоже на сложение дробей с одинаковыми знаменателями. Мы помним, что для сложения дробей с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить без изменений.

Например, чтобы сложить дроби одна четвертая, две четвертых и три четвёртых нужно записать следующее выражение:

деление многочленов пример 3

Если мы вычислим выражение деление многочленов рисунок 3, то получим дробь 6 на 4, значение которой равно 1,5.

При этом выражение деление многочленов рисунок 3 мы можем вернуть в исходное состояние деление многочленов рисунок 4, и вычислить по отдельности каждую дробь, затем сложить полученные частные. Результат по прежнему будет равен 1,5

дмо рис 1

Тоже самое происходит при делении многочлена на одночлен. Одночлен берёт на себя роль общего знаменателя для всех членов многочлена. Например, при делении многочлена ax + bx + cx на многочлен x, образуется три дроби с общим знаменателем x

дмо рис 4

Вычисление каждой дроби даст в результате многочлен a + b + c

дмо рис 3


Пример 2. Разделить многочлен 8m3+ 24m2n2 на одночлен 8m2n

деление многочленов пример 2


Пример 3. Разделить многочлен 4c2− 12c4d3 на одночлен −4c2d

деление многочленов пример 4


Деление одночлена на многочлен

Не существует тождественного преобразования, позволяющего разделить одночлен на многочлен.

Допустим, мы захотели разделить одночлен 2xy на многочлен 5+ 3+ 5.

дм рис 4

Результатом этого деления должен быть многочлен, перемножение которого с многочленом 5+ 3+ 5 даёт одночлен 2xy. Но не существует многочлена, перемножение которого с многочленом 5+ 3+ 5 давало бы в результате одночлен 2xy, поскольку перемножение многочленов даёт в результате многочлен, а не одночлен.

Но в учебниках можно встретить задания на нахождение значения выражения при заданных значениях переменных. В исходных выражениях таких заданий бывает выполнено деление одночлена на многочлен. В этом случае никаких преобразований выполнять не нужно. Достаточно подставить значения переменных в исходное выражение и вычислить получившееся числовое выражение.

Например, найдём значение выражения деление многочленов пример 5 при = 2.

Выражение деление многочленов пример 5 представляет собой деление одночлена на многочлен. В данном случае мы не сможем выполнить какие-либо преобразования. Единственное, что мы сможем сделать — это подставить число 2 в исходное выражение вместо переменной x и найти значение выражения:

деление многочленов пример 5 решение


Деление многочлена на многочлен

Если первый многочлен умножить на второй многочлен, получается третий многочлен. Например, если умножить многочлен x + 5 на многочлен x + 3, получается многочлен x+ 8x + 15

(x + 5)(x + 3) = x2 + 5x + 3x + 15 = x2 + 8x + 15

(x + 5)(x + 3) = x2 + 8x + 15

Если произведение разделить на множитель, то получится множимое. Это правило распространяется не только для чисел, но и для многочленов.

Тогда согласно этому правилу, деление полученного нами многочлена x+ 8x + 15 на многочлен + 3 должно давать в результате многочлен x + 5.

дмм рис 4

Деление многочлена на многочлен выполняется уголком — таким же образом, как и деление обычных чисел. Отличие будет в том, что при делении многочленов не нужно определять первое неполное делимое, как в случае деления обычных чисел.

Выполним уголком деление многочлена x+ 8x + 15 на многочлен x + 3. Так мы поэтапно увидим, как получается многочлен x + 5.

дм пр 1 шаг 1

В данном случае результат нам известен заранее. Это будет многочлен x + 5. Но чаще всего результат бывает неизвестным. Поэтому решение будем комментировать так, будто результат нам неизвестен.

Результатом деления должен быть новый многочлен. Члены этого многочлена будут появляться один за другим в процессе деления.

Сейчас наша задача найти первый член нового многочлена. Как это сделать?

Когда мы изначально перемножали многочлены x + 5 и x + 3, мы сначала умножили первый член первого многочлена на первый член второго многочлена. Тем самым мы получили первый член третьего многочлена:

дмм рис 5

Если мы обратно разделим первый член третьего многочлена на первый член второго многочлена, то получим первый член первого многочлена. А это то, что нам нужно. Ведь мы должны прийти к многочлену x + 5.

Этот же принцип нахождения первого члена будет выполняться и при решении других задач на деление многочленов.

Итак, чтобы найти первый член нового многочлена, нужно первый член делимого разделить на первый член делителя.

Если первый член делимого (в нашем случае это x2) разделить на первый член делителя (это x), получится x. То есть первым членом нового многочлена является x. Записываем его под правым углом:

дм пр 1 шаг 2

Теперь, как и при делении обычных чисел, умножаем x на делитель + 3. На этом этапе нужно суметь умножить одночлен на многочлен. При умножении x на + 3, получается x+ 3x. Записываем этот многочлен под делимым x2+ 8x+ 15 так, чтобы подобные члены располагались друг под другом:

дм пр 1 шаг 3

Теперь из делимого x+ 8+ 15 вычитаем x+ 3x. Подобные члены вычитаем из подобных им членов. Если из x2 вычесть x2, получится 0. Ноль не записываем. Далее если из 8x вычесть 3x, получится 5x. Записываем 5x так, чтобы этот член оказался под членами 3x и 8x

дм пр 1 шаг 4

Теперь, как и при делении обычных чисел, сносим следующий член делимого. Следующий член это 15. Сносить его нужно вместе со своим знаком:

дм пр 1 шаг 5

Теперь делим многочлен 5+ 15 на + 3. Для этого нужно найти второй член нового многочлена. Чтобы его найти, нужно первый член делимого (сейчас это член 5x) разделить на первый член делителя (это член x). Если 5x разделить на x, получится 5. То есть вторым членом нового многочлена является 5. Записываем его под правым углом, вместе со своим знаком (член 5 в данном случае положителен)

дм пр 1 шаг 6

Теперь умножаем 5 на делитель + 3. При умножении 5 на + 3, получается 5+ 15. Записываем этот многочлен под делимым 5+ 15

дм пр 1 шаг 7

Теперь из делимого 5+ 15 вычитаем 5+ 15. Если из 5+ 15 вычесть 5+ 15 получится 0.

дм пр 1 шаг 8

На этом деление завершено.

После выполнения деления можно выполнить проверку, умножив частное на делитель. В нашем случае, если частное + 5 умножить на делитель + 3, должен получаться многочлен x+ 8+ 15

(x + 5)(x + 3) = x2 + 5x + 3x + 15 = x2 + 8x + 15


Пример 2. Разделить многочлен x− 8x + 7 на многочлен − 7

Записываем уголком данное деление:

дм пр 2 шаг 1

Находим первый член частного. Разделим первый член делимого на первый член делителя, получим x. Записываем x под правым углом:

дм пр 2 шаг 2

Умножаем x на − 7, получаем x− 7x. Записываем этот многочлен под делимым x− 8+ 7 так, чтобы подобные члены располагались друг под другом:

дм пр 2 шаг 3

Вычитаем из x− 8+ 7 многочлен x− 7x. При вычитании x2 из x2 получается 0. Ноль не записываем. А при вычитании −7x из −8x получается −x, поскольку −8− (−7x) = −8+ 7= −x. Записываем −x под членами −7x и −8x. Далее сносим следующий член 7

дм пр 2 шаг 4

Следует быть внимательным при вычитании отрицательных членов. Часто на этом этапе допускаются ошибки. Если на первых порах вычитание в столбик даётся тяжело, то можно использовать обычное вычитание многочленов в строку, которое мы изучили ранее. Для этого нужно отдельно выписать делимое и вычесть из него многочлен, который под ним располагается. Преимущество этого метода заключается в том, что следующие члены делимого сносить не нужно — они автоматически перейдут в новое делимое. Давайте воспользуемся этим методом:

дм пр 2 шаг 4 1

Вернёмся к нашей задаче. Разделим многочлен x + 7 на x − 7. Для этого нужно найти второй член частного. Чтобы его найти, нужно первый член делимого (сейчас это член x) разделить на первый член делителя (это член x). Если x разделить на x, получится −1. Записываем −1 под правым углом вместе со своим знаком:

дм пр 2 шаг 5

Умножаем −1 на x − 7, получаем x + 7. Записываем этот многочлен под делимым x + 7

дм пр 2 шаг 6

Теперь из x + 7 вычитаем x + 7. Если из x + 7 вычесть x + 7 получится 0

дм пр 2 шаг 7

Деление завершено. Таким образом, частное от деления многочлена x− 8+ 7 на многочлен − 7 равно − 1

дмм пример 2 шаг последний

Выполним проверку. Умножим частное − 1 на делитель x − 7. У нас должен получиться многочлен x− 8x + 7

(x − 1)(x − 7) = x2 − x − 7x + 7 = x2 − 8x + 7


Пример 3. Разделить многочлен x+ 2xx+ 2x5 на многочлен xx3

дмм пример 3 шаг 1

Найдём первый член частного. Разделим первый член делимого на первый член делителя, получим x4

дмм пример 3 шаг 2

Умножаем x4 на делитель xx3 и полученный результат записываем под делимым. Если x4 умножить на xx3 получится xx7. Члены этого многочлена записываем под делимым так, чтобы подобные члены располагались друг под другом:

дмм пример 3 шаг 3

Теперь из делимого вычитаем многочлен xx7. Вычитание x6 из x6 даст в результате 0. Вычитание x7 из x7 тоже даст в результате 0. Оставшиеся члены 2x4 и 2x5 снесём:

дмм пример 3 шаг 4

Получилось новое делимое 2x+ 2x5. Это же делимое можно было получить, выписав отдельно многочлен x+ 2xx+ 2x5 и вычтя из него многочлен xx7

дмм пример 3 вычитание скобки

Разделим многочлен 2x+ 2x5 на делитель xx3. Как и раньше сначала делим первый член делимого на первый член делителя, получим 2x2. Записываем этот член в частном:

дмм пример 3 шаг 5

Умножаем 2x2 на делитель xx3 и полученный результат записываем под делимым. Если 2x2 умножить на xx3 получится 2x+ 2x5. Записываем члены этого многочлена под делимым так, чтобы подобные члены располагались друг под другом. Затем выполним вычитание:

дмм пример 3 шаг 6

Вычитание многочлена 2x+ 2x5 из многочлена 2x+ 2x5 дало в результате 0, поэтому деление успешно завершилось.

В промежуточных вычислениях члены нового делимого располагались друг от друга, образуя большие расстояния. Это было по причине того, что при умножении частного на делитель, результаты были записаны так, чтобы подобные члены располагались друг под другом.

Эти расстояния между членами нового делимого образуются тогда, когда члены исходных многочленов расположены беспорядочно. Поэтому перед делением желательно упорядочить члены исходных многочленов в порядке убывания степеней. Тогда решение примет более аккуратный и понятный вид.

Решим предыдущий пример, упорядочив члены исходных многочленов в порядке убывания степеней. Если члены многочлена x+ 2xx+ 2x5 упорядочить в порядке убывания степеней, то получим многочлен xx+ 2x+ 2x4. А если члены многочлена xx3 упорядочить в порядке убывания степеней, то получим многочлен xx2

Тогда деление уголком многочлена x+ 2xx+ 2x5 на многочлен xx3 примет следующий вид:

дмм пример 4 решение

Деление завершено. Таким образом, частное от деления многочлена x+ 2xx+ 2x5 на многочлен xx3 равно x4 + 2x2

дмм пример 3 шаг последний

Выполним проверку. Умножим частное x4 + 2x2 на делитель xx3. У нас должен получиться многочлен x+ 2xx+ 2x5

(x4 + 2x2)(xx3) = x4 (xx3) + 2x2(xx3) = x+ 2xx+ 2x5

При перемножении многочленов члены исходных многочленов тоже желательно упорядочивать в порядке убывания степеней. Тогда члены полученного многочлена тоже будут упорядочены в порядке убывания степеней.

Перепишем умножение (x4 + 2x2)(xx3) упорядочив члены многочленов в порядке убывания степеней.

(x4 + 2x2)(xx2) = x4(xx2) + 2x2(xx2) = xx+ 2x+ 2x4


Пример 4. Разделить многочлен 17x− 6x+ 5x− 23x + 7 на многочлен 7 − 3x2 − 2x

Упорядочим члены исходных многочленов в порядке убывания степеней и выполним уголком данное деление:

дмм пример 5

Значит,

дм рис 5


Пример 5. Разделить многочлен 4a− 14a3b − 24a2b− 54b4 на многочлен a− 3ab − 9b2

дмм пример 5 шаг 1

Найдем первый член частного. Разделим первый член делимого на первый член делителя, получим 4a2. Записываем 4a2 в частном:

дмм пример 5 шаг 2

Умножим 4a2 на делитель a− 3ab − 9b2 и полученный результат запишем под делимым:

дмм пример 5 шаг 3

Вычтем из делимого полученный многочлен 4a− 12a3− 36a2b2

дмм пример 5 шаг 4

Теперь делим −2a3+ 12a2b− 54b4 на делитель a− 3ab − 9b2. Разделим первый член делимого на первый член делителя, получим −2ab. Записываем −2ab в частном:

дмм пример 5 шаг 5

Умножим −2ab на делитель a− 3ab − 9b2 и полученный результат запишем под делимым −2a3+ 12a2b− 54b4

дмм пример 5 шаг 6

Вычтем из многочлена −2a3+ 12a2b− 54b4 многочлен −2a3+ 12a2b− 18ab3. При вычитании подобных членов обнаруживаем, что члены −54b4 и 18ab3 не являются подобными, а значит их вычитание не даст никакого преобразования. В этом случае выполняем вычитание там где это можно, а именно вычтем −2a3b из −2a3b и 6a2b2 из 12a2b2, а вычитание 18ab3 из −54b4 запишем в виде разности −54b− (+18ab3) или −54b− 18ab3

дмм пример 5 шаг 7

Этот же результат можно получить, если выполнить вычитание многочленов в строку с помощью скобок:

дмм пример 5 шаг 8

Вернёмся к нашей задаче. Разделим 6a2b− 54b− 18ab3 на делитель a− 3ab − 9b2. Делим первый член делимого на первый член делителя, получим 6b2. Записываем 6b2 в частном:

дмм пример 5 шаг 9

Умножим 6b2 на делитель a− 3ab − 9b2 и полученный результат запишем под делимым 6a2b− 54b− 18ab3. Сразу вычтем этот полученный результат из делимого 6a2b− 54b− 18ab3

дмм пример 5 шаг 10

Деление завершено. Таким образом, частное от деления многочлена 4a− 14a3b − 24a2b− 54b4 на многочлен a− 3ab − 9b2 равно 4a− 2ab + 6b2.

дм рис 6

Выполним проверку. Умножим частное 4a− 2ab + 6b2 на делитель a− 3ab − 9b2. У нас должен получиться многочлен 4a− 14a3b − 24a2b− 54b4

дмм пример 5 шаг 11


Деление многочлена на многочлен с остатком

Как и при делении обычных чисел, при делении многочлена на многочлен может образоваться остаток от деления.

Для начала вспомним деление обычных чисел с остатком. Например, разделим уголком 15 на 2. С остатком это деление будет выполнено так:

15 на 2 решение

То есть при делении 15 на 2 получается 7 целых и 1 в остатке. Ответ записывается следующим образом:

15 на 2 дробный вид

Рациональное число семь целых одна вторая читается как семь целых плюс одна вторая. Знак «плюс» по традиции не записывают. Но если при делении многочлена на многочлен образуется остаток, то этот плюс записывать нужно.

Например, если при делении многочлена a на многочлен b получится частное c, да еще останется остаток q, то ответ будет записан так:

дмм рис 6

Например, разделим многочлен 2x− 2x− 5+ 4 на многочлен − 3

дммо пример 1 шаг 1

Найдем первый член частного. Разделим первый член делимого на первый член делителя, получим 2x2. Записываем 2x2 в частном:

дммо пример 1 шаг 2

Умножим 2x2 на делитель − 3 и полученный результат запишем под делимым:

дммо пример 1 шаг 3

Вычтем из делимого полученный многочлен 2x− 6x2

дммо пример 1 шаг 4

Теперь делим 5x− 5+ 4 на делитель − 3. Разделим первый член делимого на первый член делителя, получим 5x. Записываем 5x в частном:

дммо пример 1 шаг 5

Умножим 5x на делитель − 3 и полученный результат запишем под делимым 5x− 5+ 4

дммо пример 1 шаг 6

Вычтем из многочлена 5x− 5+ 4 многочлен 5x− 15x

дммо пример 1 шаг 7

Теперь делим 10+ 4 на делитель − 3. Разделим первый член делимого на первый член делителя, получим 10. Записываем 10 в частном:

дммо пример 1 шаг 8

Умножим 10 на делитель − 3 и полученный результат запишем под делимым 10+ 4. Сразу вычтем этот полученный результат из делимого 10+ 4

дммо пример 1 шаг 10

Число 34, полученное в результате вычитания многочлена 10− 30 из многочлена 10+ 4, является остатком. Мы не сможем найти следующий член частного, который при умножении с делителем − 3 дал бы нам в результате 34.

Поэтому при делении многочлена 2x− 2x− 5+ 4 на многочлен − 3 получается 2x+ 5+ 10 и 34 в остатке. Ответ записывается таким же образом, как и при делении обычных чисел. Сначала записывается целая часть (она располагается под правым углом) плюс остаток, разделенный на делитель:

дммо рис 2


Когда деление многочленов невозможно

Деление многочлена на многочлен невозможно в случае, если степень делимого окажется меньше степени делителя.

Например, нельзя разделить многочлен x+ x на многочлен x4 + x2, поскольку делимое является многочленов третьей степени, а делитель — многочленов четвёртой степени.

Вопреки этому запрету можно попробовать разделить многочлена x+ x на многочлен x4 + x2, и даже получить частное x1, которое при перемножении с делителем будет давать делимое:

дм рис 2

дм рис 3

Но при делении многочлена на многочлен должен получаться именно многочлен, а частное x1 многочленом не является. Ведь многочлен состоит из одночленов, а одночлен в свою очередь это произведение чисел, переменных и степеней. Выражение x1 это дробь 1 na x, которая не является произведением.

Пусть имеется прямоугольник со сторонами 4 и 2

пр 42x рис 1

Площадь этого прямоугольника будет равна 4 × 2 = 8 кв.ед.

Увеличим длину и ширину этого прямоугольника на x

пр 42x рис 2

Достроим отсутствующие стороны:

пр 42x рис 3

Теперь прямоугольник имеет длину + 4 и ширину + 2. Площадь этого прямоугольника будет равна произведению (x + 4)(x + 2) и выражаться многочленом x+ 6+ 8

(+ 4)(+ 2) = x+ 4+ 2+ 8 = x+ 6+ 8

При этом мы можем выполнить обратную операцию, а именно разделить площадь x+ 6+ 8 на ширину + 2 и получить длину + 4.

дм рис 1

Степень многочлена x+ 6+ 8 равна сумме степеней многочленов-сомножителей + 4 и + 2, а значит ни одна из степеней многочленов-сомножителей не может превосходить степень многочлена-произведения. Следовательно, чтобы обратное деление было возможным, степень делителя должна быть меньше степени делимого.


Задания для самостоятельного решения

Задание 1. Выполните деление:
Решение:
Задание 2. Выполните деление:
Решение:
Задание 3. Выполните деление:
Решение:
Задание 4. Выполните деление:
Решение:
Задание 5. Выполните деление:
Решение:
Задание 6. Выполните деление:
Решение:
Задание 7. Выполните деление:
Решение:
Задание 8. Выполните деление:
Решение:
Задание 9. Выполните деление:
Решение:
Задание 10. Выполните деление:
Решение:
Задание 11. Выполните деление:
Решение:
Задание 12. Выполните деление:
Решение:
Задание 13. Выполните деление:
Решение:
Задание 14. Выполните деление:
Решение:
Задание 15. Выполните деление:
Решение:

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Разложение многочлена на множители

Разложить многочлен на множители означает представить его в виде произведения двух или нескольких многочленов.

Примером разложения многочлена на множители является вынесение общего множителя за скобки, поскольку исходный многочлен обращается в произведение двух сомножителей, один из которых является одночленом, а другой многочленом.

Разложение многочлена на множители способом вынесения общего множителя за скобки

При вынесении общего множителя за скобки образуется произведение из двух сомножителей, один из которых является одночленом, а другой многочленом. Например:

6x + 3xy = 3x(2 + y)

В рамках изучения многочленов, одночлен принято считать многочленом, состоящим из одного члена. Поэтому, когда в многочлене выносится за скобки общий множитель, то говорят что исходный многочлен представлен в виде произведения многочленов.

В нашем примере многочлен 6x + 3xy был представлен в виде произведения многочленов 3x и (2 + y). По-другому говорят, что многочлен 6x + 3xy разложен на множители 3x и (2 + y)

Существуют также многочлены, в которых можно вынести за скобки такой общий множитель, который является двучленом. Например, рассмотрим многочлен 5a(x + y) + 7a(x + y). В этом многочлене общим множителем является двучлен (x + y). Вынесем его за скобки:

рмм рисунок 1


Разложение многочлена на множители способом группировки

Некоторые многочлены содержат группу членов, имеющих общий множитель. Такие группы можно заключать в скобки и далее выносить общий множитель за эти скобки. В результате получается разложение исходного многочлена на множители, которое называют разложением на множители способом группировки.

Рассмотрим следующий многочлен:

ax + ay + 3x + 3y

Члены ax и ay имеют общий множитель a. Выпишем эти члены и заключим их в скобки:

(ax + ay)

Далее в многочлене ax + ay + 3x + 3y члены 3x и 3y имеют общий множитель 3. Выпишем эти члены и тоже заключим их в скобки:

(3x + 3y)

Теперь соединим выражения (ax + ay) и (3x + 3y) знаком «плюс»

(ax + ay) + (3x + 3y)

В многочлене (ax ay) вынесем за скобки общий множитель a, а в многочлене (3+ 3y) вынесем за скобки общий множитель 3. Делать это нужно в исходном выражении:

axnay na 3xnay step 1

Далее замечаем, что двучлен (x + y) является общим множителем. Вынесем его за скобки. Продолжаем решение в исходном примере. В результате получим:

axnay na 3xnay step 2

Запишем решение покороче, не расписывая подробно, как каждый член был разделен на общий множитель. Тогда решение получится более компактным:

axnay na 3xnay step 3

Чтобы проверить правильно ли мы разложили многочлен на множители, выполним умножение (x + y)(+ 3). Если мы всё сделали правильно, то получим многочлен ax + ay + 3x + 3y

(x + y)(+ 3) = ax + ay + 3x + 3y


Пример 2. Разложить многочлен 9x + ax − 9y − ay на множители способом группировки.

Члены 9x и −9y имеют общий множитель 9. А члены ax и −ay имеют общий множитель a. Сгруппируем их с помощью скобок, и объединим с помощью знака «плюс»

(9x − 9y) + (ax − ay)

В первой группе (9x  − 9y) вынесем за скобки общий множитель 9. Во второй группе (ax − ay) вынесем за скобки за скобки общий множитель a

(9x − 9y) + (ax − ay) = 9(x − y) + a(x − y)

Далее вынесем за скобки двучлен (x − y)

(9x − 9y) + (ax − ay) = 9(x − y) + a(x − y) = (x − y)(9 + a)


Пример 3. Разложить многочлен ab − 3b + b− 3a на множители способом группировки.

Сгруппируем первый член ab с четвёртым членом −3a. А второй член −3b сгруппируем с третьим членом b2. Не забываем, что объединять группы нужно с помощью знака «плюс»

(ab − 3a) + (−3b + b2)

В первой группе вынесем за скобки общий множитель a, во второй группе — общий множитель b

(ab − 3a) + (−3b + b2) = a(b − 3) + b(−3 + b)

Во втором произведении b(−3 + b) в сомножителе (−3 + b) изменим порядок следования членов. Тогда получим b(b − 3)

(ab − 3a) + (−3b + b2) = a(b − 3) + b(b − 3)

Теперь вынесем за скобки общий множитель (b − 3)

(ab − 3a) + (−3b + b2) = a(b − 3) + b(b − 3) = (b − 3)(a + b)


Пример 4. Разложить многочлен x2y + x + xy2 + y + 2xy + 2 на множители способом группировки.

Сгруппируем первый член многочлена со вторым, третий с четвёртым, пятый с шестым:

x2ynax na xy2 na y na 2xy na 2 step 1

В первой группе вынесем за скобки общий множитель x, во второй группе — общий множитель y, в третьей группе — общий множитель 2

x2ynax na xy2 na y na 2xy na 2 step 2

Далее замечаем, что многочлен (xy + 1) является общим множителем. Вынесем его за скобки:

x2ynax na xy2 na y na 2xy na 2 step 3


Разложение многочлена на множители по формуле квадрата суммы двух выражений

Формулы сокращённого умножения, которые мы рассматривали в прошлом уроке, можно применять для разложения многочленов на множители.

Вспомним, как выглядит формула квадрата суммы двух выражений:

(a + b)2 = a+ 2ab + b2

Поменяем местами левую и правую часть, получим:

a+ 2ab + b2 = (a + b)2

Левая часть этого равенства является многочленом, а правая часть — произведением многочленов, поскольку выражение (a + b)2 представляет собой перемножение двух сомножителей, каждый из которых равен многочлену (a + b).

Стало быть, если нам встретится выражение вида a+ 2ab + b2, то мы можем представить его в виде произведения (a + b)(a + b). Иными словами, разложить на множители (a + b) и (a + b).

a+ 2ab + b2 = (a + b)(a + b)

Пример 1. Разложить на множители многочлен 4x2 + 12xy + 9y2

Чтобы воспользоваться формулой a+ 2ab + b2 = (a + b)2, нужно узнать чему в данном случае равна переменная a и чему равна переменная b.

Первый член многочлена 4x2 + 12xy + 9y2 является результатом возведения в квадрат одночлена 2x, поскольку (2x)2 = 4x2. Третий член 9y2 является результатом возведения в квадрат одночлена 3y, поскольку (3y)2 = 9y2, а член 12xy это есть удвоенное произведение членов 2x и 3y, то есть 2 × 2x × 3y = 12xy.

Очевидно, что переменная a в данном случае равна 2x, а переменная b равна 3y

a = 2x
b = 3y

Тогда можно сделать вывод, что когда-то выражение 4x2 + 12xy + 9y2 выглядело в виде квадрата суммы (2x + 3y)2, но в результате применения формулы квадрата суммы оно обратилось в многочлен 4x2 + 12xy + 9y2. Наша задача — вернуть ему былую форму, то есть представить в виде (2+ 3y)2

4x2 + 12xy + 9y2 = (2x + 3y)2

А поскольку (2x + 3y)2 это произведение двух сомножителей, каждый из которых равен многочлену (2x + 3y), то исходный многочлен 4x2 + 12xy + 9y2 можно представить в виде разложения на множители (2x + 3y) и (2x + 3y)

4x2 + 12xy + 9y2 = (2x + 3y)(2x + 3y)

Полностью решение можно записать так:

4x2 + 12xy + 9y2 = (2x)2 + 2 × 2x × 3y + (3y)2 = (2x + 3y)2 = (2x + 3y)(2x + 3y)


Пример 2. Разложить на множители многочлен x2 + 12x + 36

Первый член данного многочлена является результатом возведения в квадрат одночлена x, поскольку x2 = x2, третий член — результатом возведения в квадрат числа 6, поскольку 62 = 36, а член 12x это удвоенное произведение членов x и 6, поскольку 2 × x × 6 = 12x.

Воспользуемся формулой a+ 2ab + b2 = (a + b)2. Роль переменной a играет одночлен x, а роль переменной b играет одночлен 6. Отсюда:

x2 + 12x + 36 = (x + 6)2

А поскольку (x + 6)2 это произведение двух сомножителей, каждый из которых равен многочлену (x + 6), то исходный многочлен x2 + 12x + 36 можно представить в виде разложения на множители (x + 6) и (x + 6)

x2 + 12x + 36 = (x + 6)(x + 6)


Разложение многочлена на множители по формуле квадрата разности двух выражений

Как и по формуле квадрата суммы двух выражений, многочлен можно разложить на множители по формуле квадрата разности двух выражений.

Формула квадрата разности двух выражений выглядит так:

(a − b)2 = a2 − 2ab + b2

Если в этой формуле поменять местами левую и правую часть, то получим:

a2 − 2ab + b2 = (a − b)2

Поскольку правая часть это произведение двух сомножителей, каждый из которых равен (a − b), то многочлен вида a2 − 2ab + b2 можно разложить на множители (a − b) и (a − b).

a2 − 2ab + b2 = (a − b)(a − b)

Пример 1. Разложить на множители многочлен 9x2 − 12xy + 4y2

Чтобы воспользоваться формулой a2 − 2ab + b2 = (a − b)2, нужно узнать чему в данном случае равна переменная a и чему равна переменная b.

Первый член данного многочлена является результатом возведения в квадрат одночлена 3x, поскольку (3x)2 = 9x2. Третий член 4y2 является результатом возведения в квадрат одночлена 2y, поскольку (2y)2 = 4y2, а член 12xy это удвоенное произведение членов 3x и 2y, то есть 2 × 3× 2y = 12xy.

Очевидно, что переменная a в данном случае равна 3x, а переменная b равна 2y

a = 3x
b = 2y

Тогда можно сделать вывод, что когда-то выражение 9x2 − 12xy + 4y2 выглядело в виде квадрата разности (3x − 2y)2, но в результате применения формулы квадрата разности оно обратилось в многочлен 9x2 − 12xy + 4y2. Наша задача — вернуть ему былую форму, то есть представить в виде (3x − 2y)2

9x2 − 12xy + 4y2 = (3x − 2y)2

А поскольку (3x − 2y)2 это произведение двух сомножителей, каждый из которых равен многочлену (3x − 2y), то исходный многочлен 9x− 12xy + 4y2 можно представить в виде разложения на множители (3x − 2y) и (3x − 2y)

9x− 12xy + 4y2 = (3x − 2y)(3x − 2y)

Полностью решение можно записать так:

9x− 12xy + 4y2 = (3x)2 − 2 × 3× 2y + (2y)2 = (3x − 2y)2 = (3x − 2y)(3x − 2y)


Пример 2. Разложить на множители многочлен x2 − 4x + 4

Воспользуемся формулой квадрата разности двух выражений:

x2 − 4x + 4 = x2 − 2 × x × 2 + 22 = (x − 2)2 = (x − 2)(x − 2)


Разложение многочлена на множители по формуле куба суммы двух выражений

Вспомним, как выглядит формула куба суммы двух выражений:

(a + b)3 = a+ 3a2b + 3abb3

Поменяем местами левую и правую часть, получим:

a+ 3a2b + 3abb3 = (a + b)3

Левая часть этого равенства является многочленом, а правая часть — произведением многочленов, поскольку выражение (a + b)3 представляет собой перемножение трёх сомножителей, каждый из которых равен многочлену (a + b).

Стало быть, если нам встретится выражение вида a+ 3a2+3abb3, то мы можем представить его в виде произведения (a + b)(a + b)(a + b). Иными словами, разложить на множители (a + b), (a + b) и (a + b).

a+ 3a2b + 3abb3 = (a + b)(a + b)(a + b)

Пример 1. Разложить на множители многочлен m3 + 6m2n + 12mn2 + 8n3

Прежде чем применять формулу куба суммы, следует проанализировать данный многочлен. А именно, убедиться что перед нами действительно куб суммы двух выражений.

Чтобы убедиться, что исходное выражение является кубом суммы двух выражений, следует узнать чему в данном случае равна переменная a и чему равна переменная b.

Первый член данного многочлена является результатом возведения в куб одночлена m

m3 = m3

Последний член 8n3 является результатом возведения в куб одночлена 2n

(2n)3 = 8n3

Второй член 6m2n является утроенным произведением квадрата первого выражения m и последнего 2n

3 × m2 × 2n = 6m2n

Третий член 12mn2 является утроенным произведением первого выражения m и квадрата последнего выражения 2n

3 × m × (2n)2 = 3 × m × 4n2 = 12mn2

То есть исходный многочлен m3 + 6m2n + 12mn2 + 8n3 по всем параметрам соответствует кубу суммы двух выражений. Переменной a в данном многочлене соответствует m, а переменной b соответствует 2n

a = m
b = 2n

Тогда можно сделать вывод, что когда-то выражение m+ 6m2+ 12mn2 + 8n3 выглядело в виде куба суммы (m + 2n)3, но в результате применения формулы куба суммы оно обратилось в многочлен m3 + 6m2n + 12mn2 + 8n3. Наша задача — вернуть ему былую форму, то есть представить в виде (m + 2n)3

m3 + 6m2n + 12mn2 + 8n3 = (m + 2n)3

А поскольку (m + 2n)3 это произведение трёх сомножителей, каждый из которых равен многочлену (m + 2n), то исходный многочлен m+ 6m2+ 12mn2 + 8n3 можно представить в виде разложения на множители (m + 2n), (m + 2n) и (m + 2n)

m3 + 6m2n + 12mn2 + 8n3 = (m + 2n)(m + 2n)(m + 2n)


Пример 2. Разложить на множители многочлен 125x3 + 75x2 + 15x + 1

Первый член данного многочлена является результатом возведения в куб одночлена 5x

(5x)3 = 125x3

Последний член 1 является результатом возведения в куб одночлена 1

13 = 1

Второй член 75x2 является утроенным произведением квадрата первого выражения 5x и последнего 1

3 × (5x)2 × 1 = 3 × 25x2 = 75x2

Третий член 15x является утроенным произведением первого выражения 5x и квадрата второго выражения 1

3 × 5x × 12 = 15x

Воспользуемся формулой a+ 3a2b + 3abb3 = (a + b)3. Роль переменной a играет одночлен 5x, а роль переменной b играет одночлен 1

a = 5x
b = 1

Поэтому,

125x3 + 75x2 + 15x + 1 = (5x + 1)3

А поскольку (5x + 1)3 это произведение трёх сомножителей, каждый из которых равен многочлену (5x + 1), то исходный многочлен 125x+ 75x+ 15+ 1 можно представить в виде разложения на множители (5x + 1), (5x + 1) и (5x + 1)

125x3 + 75x2 + 15x + 1 = (5x + 1)(5x + 1)(5x + 1)


Разложение многочлена на множители по формуле куба разности двух выражений

Как и по формуле куба суммы двух выражений, многочлен можно разложить на множители по формуле куба разности двух выражений.

Вспомним, как выглядит формула куба разности двух выражений:

(a − b)3 = a− 3a2b + 3ab− b3

Если в этой формуле поменять местами левую и правую часть, то получим:

a− 3a2b + 3ab− b3 = (a − b)3

Поскольку правая часть это произведение трёх сомножителей, каждый из которых равен (a − b), то многочлен вида a− 3a2b + 3ab− b3 можно разложить на множители (a − b), (a − b) и (a − b).

a− 3a2b + 3ab− b3 = (a − b)(a − b)(a − b)

Пример 1. Разложить на множители многочлен 64 − 96x + 48x2 − 8x3

Прежде чем применять формулу куба разности, следует проанализировать данный многочлен. А именно, убедиться что перед нами действительно куб разности двух выражений.

Чтобы убедиться, что исходное выражение является кубом разности двух выражений, следует узнать чему в данном случае равна переменная a и чему равна переменная b.

Первый член данного многочлена является результатом возведения в куб одночлена 4

43 = 64

Последний член 8x3 является результатом возведения в куб одночлена 2x

(2x)3 = 8x3

Второй член 96x является утроенным произведением квадрата первого выражения 4 и последнего 2x

3 × 42 × 2x = 3 × 16 × 2x = 96x

Третий член 48x2 является утроенным произведением первого выражения 4 и квадрата второго выражения 2x

3 × 4 × (2n)2 = 3 × 4 × 4n2 = 48x2

Видим, что исходный многочлен 64 − 96x + 48x2 − 8x3 по всем параметрам соответствует кубу разности двух выражений. Переменной a в данном многочлене соответствует 4, а переменной b соответствует 2x

a = 4
b = 2x

Тогда можно сделать вывод, что когда-то выражение 64 − 96+ 48x− 8x3 выглядело в виде куба разности (4 − 2x)3, но в результате применения формулы куба разности оно обратилось в многочлен 64 − 96+ 48x− 8x3. Наша задача — вернуть ему былую форму, то есть представить в виде (4 − 2x)3

64 − 96+ 48x− 8x3 = (4 − 2x)3

А поскольку (4 − 2x)3 это произведение трёх сомножителей, каждый из которых равен (4 − 2x), то исходный многочлен 64 − 96+ 48x− 8x3 можно представить в виде разложения на множители (4 − 2x), (4 − 2x) и (4 − 2x)

64 − 96+ 48x− 8x3 = (4 − 2x)(4 − 2x)(4 − 2x)


Пример 2. Разложить на множители многочлен 27 − 135x + 225x2 − 125x3

Первый член данного многочлена является результатом возведения в куб одночлена 3

33 = 27

Последний член 125 является результатом возведения в куб одночлена 5x

(5x)3 = 125x3

Второй член 135x является утроенным произведением квадрата первого выражения 3 и последнего 5x

3 × 32 × 5x = 3 × 9 × 5x = 135x

Третий член 225x2 является утроенным произведением первого выражения 3 и квадрата второго выражения 5x

3 × 3 × (5x)2 = 3 × 3 × 25x2 = 225x2

Воспользуемся формулой a3 − 3a2b + 3ab2 − b3 = (a − b)3. Роль переменной a играет одночлен 3, а роль переменной b играет одночлен 5x

a = 3
b = 5x

Поэтому,

27 − 135x + 225x2 − 125x3 = (3 − 5x)3

А поскольку (3 − 5x)3 это произведение трёх сомножителей, каждый из которых равен многочлену (3 − 5x), то исходный многочлен 27 − 135+ 225x− 125x3 можно представить в виде разложения на множители (3 − 5x), (3 − 5x) и (3 − 5x)

125x3 + 75x2 + 15x + 1 = (3 − 5x)(3 − 5x)(3 − 5x)


Разложение многочлена на множители по формуле разности квадратов двух выражений

Вспомним, как выглядит формула умножения разности двух выражений на их сумму:

(a − b)(a + b) = a2 − b2

Если в этой формуле поменять местами левую и правую часть, то получим:

a2 − b2 = (a − b)(a + b)

Эту формулу называют разностью квадратов. Она позволяет разложить выражение вида a2 − b2 на множители (a − b) и (a + b).

Пример 1. Разложить на множители многочлен 16x2 − 25y2

Чтобы воспользоваться формулой a2 − b2 = (a − b)(a + b), следует узнать чему в данном случае равна переменная a и чему равна переменная b.

Первый член 16x2 является результатом возведения в квадрат одночлена 4x

(4x)2 = 16x2

Второй член 25y2 является результатом возведения в квадрат одночлена 5y

(5y)2 = 25y2

То есть в данном случае переменной a соответствует одночлен 4x, а переменной b соответствует одночлен 5y

a = 4x
b = 5y

Теперь можно воспользоваться формулой a2 − b2 = (a − b)(a + b). Подставим в неё наши значения a и b

(4x)2 − (5y)2 = (4− 5y)(4+ 5y)

Полностью решение можно записать так:

16x2 − 25y2 = (4x)2 − (5y)2 = (4− 5y)(4+ 5y)

Для проверки можно выполнить умножение (4− 5y)(4+ 5y). Если мы всё сделали правильно, то должны получить 16x2 − 25y2

(4− 5y)(4+ 5y) = 16x2 − 20xy + 20xy − 25y2 = 16x2 − 25y2


Пример 2. Разложить на множители многочлен x2 − y2

В данном случае переменной a соответствует x, а переменной b соответствует y. Тогда по формуле квадрата разности имеем:

x2 − y2 = (x − y)(x + y)

Случай как в данном примере является наиболее простым, поскольку здесь сразу видно чему равно a и чему равно b.

Чаще всего члены, из которых состоит исходная разность, являются результатами возведения во вторую степень каких-нибудь одночленов. Чтобы узнать чему в таком случае равны a и b, нужно как в первом примере представить члены исходной разности в виде одночленов возведённых в квадрат.

Например, чтобы разложить многочлен 4x− 9y6 на множители, нужно исходные члены представить в виде одночленов возведённых в квадрат. Первый член в виде одночлена, возведенного в квадрат, можно записать как (2x2)2, поскольку вычисление этого выражение даёт в результате 4x4

(2x2)2 = 4x4

А член 9y6 в виде одночлена, возведенного в квадрат, можно записать как (3y3)2, поскольку вычисление этого выражение даёт в результате 9y6

(3y3)2 = 9y6

Теперь мы знаем, чему равны a и b. Они равны 2x2 и 3y3 соответственно. Подставим их в формулу a2 − b2 = (a − b)(a + b)

(2x2)2 − (3y3)2 = (2x23y3)(2x2 + 3y3)

Полностью решение можно записать так:

4x− 9y6 = (2x2)2 − (3y3)2 = (2x23y3)(2x2 + 3y3)

Несмотря на простоту разложения по формуле разности квадратов, частые ошибки приходятся именно на эти задачи. Чтобы убедиться, что задача решена правильно, не мешает выполнить умножение в получившемся разложении. Если задача решена правильно, то должен получиться изначальный многочлен.

Проверим умножением данный пример. У нас должен получиться многочлен 4x− 9y6

(2x23y3)(2x2 + 3y3) = 2x2(2x2 + 3y3) − 3y3(2x2 + 3y3)
= 4x+ 6x2y3 − 6x2y3 − 9y6 = 4x− 9y6


Пример 4. Разложить на множители многочлен 81 − 64

Представим члены исходной разности в виде одночленов возведенных в квадрат. Далее воспользуемся формулой разности квадратов:

81 − 64 = 92 − 82 = (9 − 8)(9 + 8)


Разложение многочлена на множители по формуле сумме кубов двух выражений

Мы помним, что произведение суммы двух выражений и неполного квадрата их разности равно сумме кубов этих выражений:

(a + b)(a2 − ab + b2) = a3 + b3

Если в этой формуле поменять местами левую и правую часть, то получим формулу, называемую суммой кубов двух выражений:

a3 + b3 = (a + b)(a2 − ab + b2)

Эта формула позволяет разложить выражение вида a3 + b3 на множители (a + b) и (a2 − ab + b2).

Пример 1. Разложить на множители многочлен 27x3 + 64y3

Представим члены 27x3 и 64y3 в виде одночленов, возведённых в куб

27x3 + 64y3 = (3x)3 + (4y)3

Теперь воспользуемся формулой суммы кубов. Переменная a в данном случае равна 3x, переменная b равна 4y

27x3 + 64y3 = (3x)3 + (4y)3 = (3x + 4y)((3x)2 − 3x × 4y + (4y)2) =
(3x + 4y)(9x2 − 12xy + 16y2)


Пример 2. Разложить на множители многочлен 125 + 8

Представим члены 125 и 8 в виде одночленов, возведённых в куб:

125 + 8 = 53 + 23

Далее воспользуемся формулой суммы кубов:

125 + 8 = 53 + 23 = (5 + 2)(25 − 10 + 4)


Разложение многочлена на множители по формуле разности кубов двух выражений

Произведение разности двух выражений и неполного квадрата их суммы равно разности кубов этих выражений:

(a − b)(a2 + ab + b2) = a3 − b3

Если в этой формуле поменять местами левую и правую часть, то получим формулу, называемую разностью кубов двух выражений:

a3 − b3 = (a − b)(a2 + ab + b2)

Эта формула позволяет разложить выражение вида a3b3 на множители (a − b) и (a2 + ab + b2).

Пример 1. Разложить на множители многочлен 64x3 − 27y3

Представим члены 64x3 и 27y3 в виде одночленов, возведённых в куб:

64x3 − 27y3 = (4x)3 − (3y)3

Теперь воспользуемся формулой разности кубов. Переменная a в данном случае равна 4x, переменная b равна 3y

64x3 − 27y3 = (4x)3 − (3y)3 = (4x − 3y)((4x)2 + 4x × 3y + (3y)2) =
(4x − 3y)(16x2 + 12xy + 9y2)


Пример 2. Разложить на множители многочлен 64 − 27

Представим члены 64 и 27 в виде одночленов, возведённых в куб:

64 − 27 = 43 − 33 = (4 − 3)(16 + 12 + 9)


Пример 3. Разложить на множители многочлен 125x3 − 1

Представим члены 125x3 и 1 в виде одночленов, возведённых в куб:

125x3 − 1 = (5x)3 − 13

Теперь воспользуемся формулой разности кубов. Переменная a в данном случае равна 5x, переменная b равна 1

125x3 − 1 = (5x)3 − 13 = (5x − 1)((5x)2 + 5x × 1 + 12) =
(5x − 1)(25x2 + 5x + 1)


Разложение многочлена на множители различными способами

К некоторым многочленам можно применять различные способы разложения на множители. Например, к одному многочлену можно применить способ вынесения общего за скобки, а затем воспользоваться одной из формул сокращённого умножения.

Пример 1. Разложить на множители многочлен ax2 − ay2 

В данном многочлене содержится общий множитель a. Вынесем его за скобки:

ax2 − ay2 = a(x2 − y2)

При этом в скобках образовался многочлен, который является разностью квадратов. Применив формулу разности квадратов. Тогда получим:

ax2 − ay2 = a(x2 − y2) = a(x − y)(x + y)


Пример 2. Разложить на множители многочлен 3x2 + 6xy + 3y2

Вынесем за скобки общий множитель 3

3x2 + 6xy + 3y2 = 3(x2 + 2xy + y2)

В скобках образовался многочлен, который является квадратом суммы двух выражений, а именно выражений x и y. Тогда этот квадрат суммы можно представить как (x + y)2 и далее записать в виде двух сомножителей, каждый из которых равен (x + y)

3x2 + 6xy + 3y2 = 3(x2 + 2xy + y2) = 3(x + y)2 = 3(x + y)(x + y)


Задания для самостоятельного решения

Задание 1. Следующий многочлен разложите на множители способом группировки:
Решение:
Задание 2. Следующий многочлен разложите на множители способом группировки:
Решение:
Задание 3. Следующий многочлен разложите на множители способом группировки:
Решение:
Задание 4. Следующий многочлен разложите на множители способом группировки:
Решение:
Задание 5. Следующий многочлен разложите на множители способом группировки:
Решение:
Задание 6. Следующий многочлен разложите на множители способом группировки:
Решение:
Задание 7. Разложите на множители многочлен:
x2 + 12x + 36
Решение:
x2 + 12x + 36 = x2 + 2 × x × 6 + 62 = (x + 6)2 = (x + 6)(x + 6)
Задание 8. Разложите на множители многочлен:
8xy + y2 + 16x2
Решение:
8xy + y2 + 16x2 = 16x2 + 8xy + y2 = (4x)2 + 2 × 4x × y + y2 = (4x + y)2 = (4x + y)(4x + y)
Задание 9. Разложите на множители многочлен:
Решение:
Задание 10. Разложите на множители многочлен:
Решение:
Задание 11. Разложите на множители многочлен:
Решение:
Задание 12. Разложите на множители многочлен:
Решение:
Задание 13. Разложите на множители многочлен:
Решение:
Задание 14. Разложите на множители многочлен:
Решение:
Задание 15. Разложите на множители многочлен:
Решение:
Задание 16. Разложите на множители многочлен:
Решение:
Задание 17. Разложите на множители многочлен:
Решение:
Задание 18. Разложите на множители многочлен:
Решение:
Задание 19. Разложите на множители многочлен:
Решение:
Задание 20. Разложите на множители многочлен:
Решение:
Задание 21. Разложите на множители многочлен:
Решение:
Задание 22. Разложите на множители многочлен:
Решение:
Задание 23. Разложите на множители многочлен:
Решение:
Задание 24. Разложите на множители многочлен:
Решение:
Задание 25. Разложите на множители многочлен:
Решение:
Задание 26. Разложите на множители многочлен:
Решение:
Задание 27. Разложите на множители многочлен:
Решение:
Задание 28. Разложите на множители многочлен:
Решение:
Задание 29. Разложите на множители многочлен:
Решение:
Задание 30. Разложите на множители многочлен:
Решение:
Задание 31. Разложите на множители многочлен:
Решение:
Задание 32. Разложите на множители многочлен:
Решение:
Задание 33. Разложите на множители многочлен:
Решение:
Задание 34. Разложите на множители многочлен:
Решение:
Задание 35. Разложите на множители многочлен:
Решение:
Задание 36. Разложите на множители многочлен:
Решение:
Задание 37. Разложите на множители многочлен:
Решение:
Задание 38. Разложите на множители многочлен:
Решение:
Задание 39. Разложите на множители многочлен:
Решение:
Задание 40. Разложите на множители многочлен:
Решение:
Задание 41. Разложите на множители многочлен:
Решение:
Задание 42. Разложите на множители многочлен:
Решение:
Задание 43. Разложите на множители многочлен:
Решение:
Задание 44. Разложите на множители многочлен:
Решение:
Задание 45. Разложите на множители многочлен:
Решение:
Задание 46. Разложите на множители многочлен:
Решение:
Задание 47. Разложите на множители многочлен:
Решение:
Задание 48. Разложите на множители многочлен:
Решение:
Задание 49. Разложите на множители многочлен:
Решение:
Задание 50. Разложите на множители многочлен:
Решение:
Задание 51. В следующем выражении вынесите за скобки общий множитель 2a, затем выражение в скобках разложите на множители:
Решение:
Задание 52. В следующем выражении вынесите за скобки общий множитель 4, затем выражение в скобках разложите на множители:
Решение:
Задание 53. В следующем выражении вынесите за скобки общий множитель 2x2y2, затем выражение в скобках разложите на множители:
Решение:
Задание 54. В следующем выражении вынесите за скобки общий множитель 4x3y3, затем выражение в скобках разложите на множители:
Решение:

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Формулы сокращённого умножения

Продолжаем изучать многочлены. В данном уроке мы научимся перемножать многочлены с помощью формул сокращённого умножения.

Квадрат суммы двух выражений

Существует ряд случаев, когда умножение многочлена на многочлен можно значительно упростить. Таковым к примеру является случай (2+ 3y)2.

Выражение (2+ 3y)2 это перемножение двух многочленов, каждый из которых равен (2+ 3y)

(2x + 3y)2 = (2x + 3y)(2x + 3y)

Получили умножение многочлена на многочлен. Выполним его:

(2x + 3y)2 = (2x + 3y)(2x + 3y) = 4x6xy6xy + 9y2 = 4x+ 12xy + 9y2

То есть выражение (2+ 3y)2 равно 4x2 + 12xy + 9y2

(2x + 3y)2 = 4x+ 12xy + 9y2

Решим аналогичный пример, который попроще:

(a + b)2

Выражение (a + b)2 это перемножение двух многочленов, каждый из которых равен (a + b)

(a + b)2 = (a + b)(a + b)

Выполним это умножение:

(a + b)2 = (a + b)(a + b) = aab + ab + b2 = a+ 2ab + b2

То есть выражение (a + b)2 равно a+ 2ab + b2

(a + b)2 = a+ 2ab + b2

Оказывается, что случай (a + b)2 можно распространить для любых a и b. Первый пример, который мы решили, а именно (2x + 3y)2 можно решить с помощью тождества (a + b)2 = a+ 2ab + b2. Для этого нужно подставить вместо переменных a и b соответствующие члены из выражение (2x + 3y)2. В данном случае переменной a соответствует член 2x, а переменной b соответствует член 3y

a = 2x

b = 3y

И далее можно воспользоваться тождеством (a + b)2 = a+ 2ab + b2, но вместо переменных a и b нужно подставлять выражения 2x и 3y соответственно:

(2x + 3y)2 = (2x)2 + 2 × 2× 3y + (3y)2 = 4x+ 12xy + 9y2

Как и в прошлый раз получили многочлен 4x+ 12xy + 9y2. Решение обычно записывают покороче, выполняя в уме все элементарные преобразования:

(2x + 3y)2 = 4x+ 12xy + 9y2

Тождество (a + b)2 = a+ 2ab + b2 называют формулой квадрата суммы двух выражений. Эту формулу можно прочитать так:

Квадрат суммы двух выражений равен квадрату первого выражения плюс удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

Рассмотрим выражение (2 + 3)2. Его можно вычислить двумя способами: выполнить сложение в скобках и возвести полученный результат в квадрат, либо воспользоваться формулой квадрата суммы двух выражений.

Первый способ:

(2 + 3)2 = 52 = 25

Второй способ:

(2 + 3)2 = 22 + 2 × 2 × 3 + 32 = 4 + 12 + 9 = 25


Пример 2. Преобразовать выражение (5+ 3)2 в многочлен.

Воспользуемся формулой квадрата суммы двух выражений:

(a + b)2 = a+ 2ab + b2

(5a + 3)2 = (5a)+ 2 × 5a × 3 + 32 = 25a2 + 30a + 9

Значит, (5a + 3)2 = 25a2 + 30a + 9.

Попробуем решить данный пример, не пользуясь формулой квадрата суммы. У нас должен получиться тот же результат:

(5a + 3)2 = (5a + 3)(5a + 3) = 25a2 + 15a + 15a + 9 = 25a2 + 30a + 9

Формула квадрата суммы двух выражений имеет геометрический смысл. Мы помним, что для вычисления площади квадрата нужно возвести во вторую степень его сторону.

Например, площадь квадрата со стороной a будет равна a2. Если увеличить сторону квадрата на b, то площадь будет равна (a + b)2

Рассмотрим следующий рисунок:

фсу рисунок 2

Представим, что сторону квадрата, изображённого на данном рисунке увеличили на b. У квадрата все стороны равны. Если его сторону увеличить на b, то остальные стороны тоже увеличатся на b

фсу рисунок 3

Получился новый квадрат, который больше предыдущего. Чтобы хорошо увидеть его, достроим отсутствующие стороны:

фсу рисунок 4

Чтобы вычислить площадь этого квадрата, можно по отдельности вычислить квадраты и прямоугольники, входящие в него, затем сложить полученные результаты.

Сначала можно вычислить квадрат со стороной a — его площадь будет равна a2. Затем можно вычислить прямоугольники со сторонами a и b — они будут равны ab. Затем можно вычислить квадрат со стороной b

фсу рисунок 6

В результате получается следующая сумма площадей:

a2 + ab + ab + b2

Сумму площадей одинаковых прямоугольников можно заменить на умножение 2ab, которое буквально будет означать «повторить два раза площадь прямоугольника ab». Алгебраически это получается путём приведения подобных слагаемых ab и ab. В результате получается выражение a+ 2ab b2, которое является правой частью формулы квадрата суммы двух выражений:

(a + b)2 = a+ 2ab b2


Квадрат разности двух выражений

Формула квадрата разности двух выражений выглядит следующим образом:

(a − b)2 = a2 − 2ab + b2

Эту формулу можно прочитать так:

Квадрат разности двух выражений равен квадрату первого выражения минус удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

Формула квадрата разности двух выражений выводится таким же образом, как и формула квадрата суммы двух выражений. Выражение (a − b)2 представляет собой произведение двух многочленов, каждый из которых равен (a − b)

(a − b)2 = (a − b)(a − b)

Если выполнить это умножение, то получится многочлен a2 − 2ab + b2

(a − b)2 = (a − b)(a − b) = a− ab − ab b2 = a2 − 2ab + b2

Пример 1. Преобразовать выражение (7− 5)2 в многочлен.

Воспользуемся формулой квадрата разности двух выражений:

(a − b)2 = a2 − 2ab + b2

(7− 5)2 = (7x)− 2 × 7x × 5 + 52 = 49x2 − 70x + 25

Значит, (7− 5)2 = 49x2 + 70x + 25.

Попробуем решить данный пример, не пользуясь формулой квадрата разности. У нас должен получиться тот же результат:

(7− 5)2 = (7− 5)(7− 5) = 49x2 − 35x − 35x + 25 = 49x2 − 70+ 25.

Формула квадрата разности двух выражений тоже имеет геометрический смысл. Если площадь квадрата со стороной a равна a2, то площадь квадрата, сторона которого уменьшена на b, будет равна (a − b)2

Рассмотрим следующий рисунок:

фсу рисунок 7

Представим, что сторону квадрата, изображённого на данном рисунке уменьшили на b. У квадрата все стороны равны. Если одну сторону уменьшить на b, то остальные стороны тоже уменьшатся на b

фсу рисунок 8

Получился новый квадрат, который меньше предыдущего. На рисунке он выделен жёлтым. Сторона его равна − b, поскольку старая сторона a уменьшилась на b. Чтобы вычислить площадь этого квадрата, можно из первоначальной площади квадрата a2 вычесть площади прямоугольников, которые получились в процессе уменьшения сторон старого квадрата. Покажем эти прямоугольники:

фсу рисунок 9

Тогда можно написать следующее выражение: старая площадь a2 минус площадь ab минус площадь (a − b)b

a2ab − (a − b)b

Раскроем скобки в выражении (a − b)b

a2ab − ab + b2

Приведем подобные слагаемые:

a2 − 2ab + b2

В результате получается выражение a2 − 2ab + b2, которое является правой частью формулы квадрата разности двух выражений:

(a − b)2 = a2 − 2ab + b2

Формулы квадрата суммы и квадрата разности в общем называют формулами сокращённого умножения. Эти формулы позволяют значительно упростить и ускорить процесс перемножения многочленов.

Ранее мы говорили, что рассматривая член многочлена по отдельности, его нужно рассматривать вместе со знаком, который перед ним располагается.

Но применяя формулы сокращённого умножения, знак исходного многочлена не следует рассматривать в качестве знака самого этого члена.

Например, если дано выражение (5x − 2y)2, и мы хотим воспользоваться формулой (a − b)2 = a2 − 2ab + b2, то вместо b нужно подставлять 2y, а не −2y. Это особенность работы с формулами, которую не следует забывать.

(5x − 2y)2
a = 5x
b = 2y
(5x − 2y)2 = (5x)2 − 2 × 5x × 2y + (2y)2 = 25x2 − 20xy + 4y2

Если подставлять −2y, то это будет означать, что разность в скобках исходного выражения была заменена на сумму:

(5x − 2y)2 = (5x + (−2y))2

и в таком случае нужно применять не формулу квадрата разности, а формулу квадрата суммы:

(5x + (−2y)2
a = 5x
b = −2y
(5x + (−2y))2 = (5x)2 + 2 × 5x × (−2y) + (−2y)2 = 25x2 − 20xy + 4y2

Исключением могут быть выражения вида (− (−y))2. В данном случае, применяя формулу (a − b)2 = a2 − 2ab + b2 вместо b следует подставить (−y)

(− (−y))2 = x2 − 2 × × (−y) + (−y)2 = x2 + 2xy + y2

Но возводя в квадрат выражения вида x − (−y), удобнее будет заменять вычитание на сложение x + y. Тогда первоначальное выражение примет вид (x + y)2 и можно будет воспользоваться формулой квадрата суммы, а не разности:

(x + y)2 = x2 + 2xy + y2


Куб суммы и куб разности

Формулы куба суммы двух выражений и куба разности двух выражений выглядят следующим образом:

(a + b)3 = a+ 3a2b + 3abb3

(a − b)3 = a− 3a2b + 3ab− b3

Формулу куба суммы двух выражений можно прочитать так:

Куб суммы двух выражений равен кубу первого выражения плюс утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения. 

А формулу куба разности двух выражений можно прочитать так:

Куб разности двух выражений равен кубу первого выражения минус утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго минус куб второго выражения. 

При решении задач желательно знать эти формулы наизусть. Если не запомнили — не беда! Их можно выводить самостоятельно. Мы это уже умеем.

Выведем формулу куба суммы самостоятельно:

(a + b)3

Выражение (a + b)3 представляет собой произведение из трёх многочленов, каждый из которых равен (b)

(a + b)3 = (b)(b)(b)

Но выражение (a + b)3 также может быть записано как (b)(b)2

(a + b)3 = (b)(b)2

При этом сомножитель (b)2 является квадратом суммы двух выражений. Этот квадрат суммы равен выражению a+ 2ab + b2.

Тогда (a + b)3 можно записать как (b)(a+ 2ab + b2).

(a + b)3 = (b)(a+ 2ab + b2)

А это есть умножение многочлена на многочлен. Выполним его:

(a + b)3 = (b)(a+ 2ab + b2) = a3 + 2a2b + ab2 + a2b + 2ab2 + b3 = a+ 3a2b + 3abb3

Аналогично можно вывести формулу куба разности двух выражений:

(a − b)3 = (a − b)(a2 − 2ab + b2) = a32a2b + ab2a2b + 2ab2b3 = a− 3a2+ 3ab− b3


Пример 1. Преобразуйте выражение (+ 1)3 в многочлен.

Воспользуемся формулой куба суммы двух выражений:

(a + b)3 = a+ 3a2b + 3abb3

(+ 1)3 = x3 + 3 × x2 × 1 + 3 × x × 12 + 13 = x3 + 3x2 + 3x + 1

Попробуем решить данный пример, не используя формулу куба суммы двух выражений. У нас получится тот же результат, но решение станет длиннее:

(+ 1)3 = (+ 1)(+ 1)(+ 1) = (+ 1)(x2 + 2x + 1) = x3 + 2x2 + x + x2 + 2x + 1 = x3 + 3x2 + 3x + 1


Пример 2. Преобразовать выражение (6a+ 3b3)3 в многочлен.

Воспользуемся формулой куба суммы двух выражений:

(a + b)3 = a+ 3a2b + 3abb3

(6a2 + 3b3)3 = (6a2)+ 3 × (6a2)2 × 3b3 + 3 × 6a× (3b3)2 + (3b3)3 = 216a6 + 3 × 36a4 × 3b+ 3 × 6a× 9b6 + 27b9


Пример 3. Преобразовать выражение (n2 − 3)3 в многочлен.

Воспользуемся формулой куба разности двух выражений:

(a − b) = a− 3a2b + 3ab− b3

(n2 − 3)3 = (n2)3 − 3 × (n2)2 × 3 + 3 × n2 × 32 − 33 = n6 − 9n4  + 27n2 − 27


Пример 4. Преобразовать выражение (2x− x3)3 в многочлен.

Воспользуемся формулой куба разности двух выражений:

(a − b) = a− 3a2b + 3ab− b3

(2x− x3)3 = (2x2)− 3 × (2x2)2 × x3 + 3 × 2x× (x3)− (x3)3 =
8x6 − 3 × 4x4 × x3 + 3 × 2x× x6x9 =
8x6 − 12x7 + 6x8x9


Умножение разности двух выражений на их сумму

Встречаются задачи, в которых требуется умножить разность двух выражений на их сумму. Например:

(a − b)(a + b)

В этом выражении разность двух выражений a и b умножена на сумму этих же двух выражений. Выполним данное умножение:

(a − b)(a + b) = a2 + ab − ab − b2 = a2 − b2

То есть выражение (a − b)(a + b) равно a2 − b2

(a − b)(a + b) = a2 − b2

Видим, что при умножении разности двух выражений на их сумму, получается разность квадратов этих выражений.

Произведение разности двух выражений и их суммы равно разности квадратов этих выражений.

Случай (a − b)(a + b) можно распространить для любых a и b. Проще говоря, если при решении задачи потребуется умножить разность двух выражений на их сумму, то это умножение можно заменить на разность квадратов этих выражений.

Пример 1. Выполнить умножение (2x − 5)(2x + 5)

В этом примере разность выражений 2x и 5 умножена на сумму этих же выражений. Тогда согласно формуле (a − b)(a + b) = a2 − b2 имеем:

(2x − 5)(2x + 5) = (2x)2 − 52

Вычислим правую часть, получим 4x2 − 25

(2x − 5)(2x + 5) = (2x)2 − 52 = 4x2 − 25

Попробуем решить данный пример, не пользуясь формулой (a − b)(a + b) = a− b2. У нас получится тот же результат 4x2 − 25

(2x − 5)(2x + 5) = 4x− 10x + 10x − 25 = 4x2 − 25


Пример 2. Выполнить умножение (4x − 5y)(4x + 5y)

Воспользуемся формулой умножения разности двух выражений на их сумму:

(a − b)(a + b) = a2 − b2

(4x − 5y)(4x + 5y) = (4x)2 − (5y)2 = 16x2 − 25y2


Пример 3. Выполнить умножение (2+ 3b)(2− 3b)

Воспользуемся формулой умножения разности двух выражений на их сумму:

(a − b)(a + b) = a2 − b2

(2a + 3b)(2a − 3b) = (2a)2 − (3b)2 = 4a2 − 9b2

В данном примере сумма членов 2a и 3b располагалась раньше, чем разность этих членов. А в формуле (a − b)(a + b) = a2 − b2 разность располагается раньше.

Нет никакой разницы как располагаются сомножители (a − b) в (a + b) в формуле. Они могут быть быть записаны как (a − b)(a + b), так и (a + b)(a − b). Результат по прежнему будет равен a2 − b2, поскольку от перестановки сомножителей произведение не меняется.

Так и в данном примере сомножители (2a + 3b) и (2a − 3b) можно записать как (2a + 3b)(2a − 3b), так и (2a − 3b)(2a + 3b). Результат всё так же будет равен 4a− 9b2.

Пример 3. Выполнить умножение (7 + 3x)(3x − 7)

Воспользуемся формулой умножения разности двух выражений на их сумму:

(a − b)(a + b) = a2 − b2

(7 + 3x)(3x − 7) = (3x)2 − 72 = 9x2 − 49


Пример 4. Выполнить умножение (x− y3)(x2 + y3)

(a − b)(a + b) = a2 − b2

(x− y3)(x2 + y3) = (x2)2 − (y3)2 = x4y6


Пример 5. Выполнить умножение (−5− 3y)(5x − 3y)

В выражении (−5− 3y) вынесем за скобки −1, тогда исходное выражение примет следующий вид:

(−5− 3y)(5x − 3y) = −1(5x + 3y)(5x − 3y)

Произведение (5x + 3y)(5x − 3y) заменим на разность квадратов:

(−5− 3y)(5− 3y) = −1(5x + 3y)(5x − 3y) = −1((5x)2 − (3y)2)

Разность квадратов была заключена в скобки. Если этого не сделать, то получится, что −1 умножается только на (5x)2. А это приведет к ошибке и изменению значения исходного выражения.

Далее вычисляем выражение в скобках:

(−5− 3y)(5− 3y) = −1(5x + 3y)(5x − 3y) = −1((5x)2 − (3y)2) = −1(25x− 9x2)

Теперь умножим −1 на выражение в скобках и получим окончательный результат:

(−5− 3y)(5− 3y) = −1(5x + 3y)(5x − 3y) = −1((5x)2 − (3y)2) =
−1(25x− 9y2) = −25x+ 9y2


Умножение разности двух выражений на неполный квадрат их суммы

Встречаются задачи, в которых требуется умножить разность двух выражений на неполный квадрат их суммы. Выглядит это произведение следующим образом:

(a − b)(a2 + ab + b2)

Первый многочлен (a − b) является разностью двух выражений, а второй многочлен (a2 + ab + b2) является неполным квадратом суммы этих двух выражений.

Неполный квадрат суммы это многочлен вида a2 + ab + b2. Он похож на обычный квадрат суммы a2 + 2ab + b2 за исключением того, что в нём произведение первого и второго выражений не удваивается.

Например, выражение 4x2 + 6xy + 9y2 является неполным квадратом суммы выражений 2x и 3y.

Действительно, первый член выражения 4x2 + 6xy + 9y2, а именно 4x2 является квадратом выражения 2x, поскольку (2x)2 = 4x2. Третий член выражения 4x2 + 6xy + 9y2, а именно 9y2 является квадратом выражения 3y, поскольку (3y)2 = 9y2. Член находящийся в середине 6xy, является произведением выражений 2x и 3y.

Итак, умножим разность (a − b) на неполный квадрат суммы a2 + ab + b2

(a − b)(a2 + ab + b2) = a(a2 + ab + b2) − b(a2 + ab + b2) =
a3 + a2b + ab2a2bab2b3 = a3b3

То есть выражение (a − b)(a2 + ab + b2) равно a3b3

(a − b)(a2 + ab + b2) = a3b3

Это тождество называют формулой умножения разности двух выражений на неполный квадрат их суммы. Эту формулу можно прочитать так:

Произведение разности двух выражений и неполного квадрата их суммы равно разности кубов этих выражений.

Пример 1. Выполнить умножение (2x − 3y)(4x2 + 6xy + 9y2)

Первый многочлен (2x − 3y) это разность двух выражений 2x и 3y. Второй многочлен 4x2 + 6xy + 9y2 это неполный квадрат суммы двух выражений 2x и 3y. Это позволяет не приводя длинных вычислений, воспользоваться формулой (a − b)(a2 + ab + b2) = a3b3. В нашем случае умножение (2x − 3y)(4x2 + 6xy + 9y2) можно заменить на разность кубов 2x и 3y

(2x − 3y)(4x2 + 6xy + 9y2) = (2x)3 − (3y)3 = 8x− 27y3

Попробуем решить этот же пример, не пользуясь формулой (a − b)(aab b2) = a− b3. У нас получится тот же результат, но решение станет длиннее:

(2x − 3y)(4x2 + 6xy + 9y2) = 2x(4x2 + 6xy + 9y2) − 3y(4x2 + 6xy + 9y2) =
8x3 + 12x2y + 18xy2 − 12x2y − 18xy2 − 27y3 = 8x3 − 27y3


Пример 2. Выполнить умножение (3 − x)(9 + 3x + x2)

Первый многочлен (3 − x) является разностью двух выражений, а второй многочлен является неполным квадратом суммы этих двух выражений. Это позволяет воспользоваться формулой (a − b)(a2 + ab + b2) = a3b3

(3 − x)(9 + 3x + x2) = 33 − x3 = 27 − x3


Умножение суммы двух выражений на неполный квадрат их разности

Встречаются задачи, в которых требуется умножить сумму двух выражений на неполный квадрат их разности. Выглядит это произведение следующим образом:

(a + b)(a2 − ab + b2)

Первый многочлен (a + b) является суммой двух выражений, а второй многочлен (a2 − ab + b2) является неполным квадратом разности этих двух выражений.

Неполный квадрат разности это многочлен вида a2 − ab + b2. Он похож на обычный квадрат разности a2 − 2ab + b2 за исключением того, что в нём произведение первого и второго выражений не удваивается.

Например, выражение 4x2 − 6xy + 9y2 является неполным квадратом разности выражений 2x и 3y

(2x)2 − 2x × 3y + (3y)2 = 4x2 − 6xy + 9y2

Вернёмся к изначальному примеру. Умножим сумму a + b на неполный квадрат разности a2 − ab + b2

(a + b)(a2 − ab + b2) = a(a2 − ab + b2) + b(a2 − ab + b2) =
a3 − a2b + ab2 + a2bab2 + b3 = a3 + b3

То есть выражение (a + b)(a2 − ab + b2) равно a3 + b3

(a + b)(a2 − ab + b2) = a3 + b3

Это тождество называют формулой умножения суммы двух выражений на неполный квадрат их разности. Эту формулу можно прочитать так:

Произведение суммы двух выражений и неполного квадрата их разности равно сумме кубов этих выражений.

Пример 1. Выполнить умножение (2x + 3y)(4x− 6xy + 9y2)

Первый многочлен (2x + 3y) это сумма двух выражений 2x и 3y, а второй многочлен 4x2 − 6xy + 9y2 это неполный квадрат разности этих выражений. Это позволяет не приводя длинных вычислений, воспользоваться формулой (a + b)(a2ab + b2) = a3 + b3. В нашем случае умножение (2x + 3y)(4x2 − 6xy + 9y2) можно заменить на сумму кубов 2x и 3y

(2x + 3y)(4x2 − 6xy + 9y2) = (2x)3 + (3y)3 = 8x+ 27y3

Попробуем решить этот же пример, не пользуясь формулой (a + b)(a− ab b2) = ab3. У нас получится тот же результат, но решение станет длиннее:

(2x + 3y)(4x2 − 6xy + 9y2) = 2x(4x2 − 6xy + 9y2) + 3y(4x2 − 6xy + 9y2) =
8x3 − 12x2y + 18xy2 + 12x2y − 18xy2 + 27y3 = 8x3 + 27y3


Пример 2. Выполнить умножение (2y)(4x2 − 2xy + y2)

Первый многочлен (2y) является суммой двух выражений, а второй многочлен (4x2 − 2xy + y2) является неполным квадратом разности этих выражений. Это позволяет воспользоваться формулой (a + b)(a− ab b2) = ab3

(2y)(4x2 − 2xy + y2) = (2x)3 + y3 = 8x3 + y3

Попробуем решить этот же пример, не пользуясь формулой (a + b)(a− ab b2) = ab3. У нас получится тот же результат, но решение станет длиннее:

(2y)(4x2 − 2xy + y2) = 2x(4x2 − 2xy + y2) + y(4x2 − 2xy + y2) = 
8x3 − 4x2y + 2xy2 + 4x2y − 2xy2 + y3 = 8x3 + y3


Задания для самостоятельного решения

Задание 1. Преобразуйте выражение (m + n)2 в многочлен.
Решение:
(m + n)2 = m2 + 2mn + n2
Задание 2. Преобразуйте выражение (x + 8)2 в многочлен.
Решение:
(x + 8)2 = x2 + 2 × x × 8 + 82 = x2 + 16x + 64
Задание 3. Преобразуйте выражение (2x2 + 3x3)2 в многочлен.
Решение:
(2x2 + 3x3)2 = (2x2)2 + 2 × 2x2 × 3x3 + (3x3)2 = 4x4 + 12x5 + 9x6
Задание 4. Преобразуйте выражение (5a + 5)2 в многочлен.
Решение:
(5a + 5)2 = (5a)2 + 2 × 5a × 5 + 52 = 25a2 + 50a + 25
Задание 5. Преобразуйте выражение (9 − x)2 в многочлен.
Решение:
(9 − x)2 = 92 − 2 × 9 × x + x2 = 81 − 18x + x2
Задание 6. Преобразуйте выражение (x − 25)2 в многочлен.
Решение:
(x − 25)2 = x2 − 2 × x × 25 + 252 = x2 − 50x + 625
Задание 7. Преобразуйте выражение (3x2y3)2 в многочлен.
Решение:
(3x2y3)2 = (3x2)2 − 2 × 3x2 × y3 + ( y3)2 = 9x4 − 6x2y3 + y6
Задание 8. Выполните умножение (x − y)(x + y)
Решение:
(x − y)(x + y) = x2 − y2
Задание 9. Выполните умножение (2x − y)(2x + y)
Решение:
(2x − y)(2x + y) = (2x)2 − y2 = 4x2 − y2
Задание 10. Выполните умножение (7 + 3y)(3y − 7)
Решение:
(7 + 3y)(3y − 7) = (3y)2 − 72 = 9y2 − 49
Задание 11. Выполните умножение (x2 − 5)(x2 + 5)
Решение:
(x2 − 5)(x2 + 5) = (x2)2 − 52 = x4 − 25
Задание 12. Выполните умножение (a3b2)(a3 + b2)
Решение:
(a3b2)(a3 + b2) = (a3)2 − (b2)2 = a6b4
Задание 13. Выполните умножение (5a2 + 2b3)(5a2 − 2b3)
Решение:
(5a2 + 2b3)(5a2 − 2b3) = (5a2)2 − (2b3)2 = 25a4 − 4b6
Задание 14. Выполните умножение (9xy2)(y2 + 9x)
Решение:
(9xy2)(y2 + 9x) = (9x)2 − (y2)2 = 81x2y4
Задание 15. Выполните умножение (2 − x)(4 + 2x + x2)
Решение:
(2 − x)(4 + 2x + x2) = 2− x3 = 8 − x3
Задание 16. Выполните умножение (3 − 2)(9 + 6 + 4)
Решение:
(3 − 2)(9 + 6 + 4) = 3− 23 = 27 − 8 = 19
Задание 17. Выполните умножение (4x + 1)(16x2 − 4x + 1)
Решение:
(4x + 1)(16x2 − 4x + 1) = (4x)− 13 = 64x+ 1

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Многочлены

Определения и примеры

Многочлен — это сумма одночленов.

Например, выражение 2+ 4xy2 + + 2xy2 является многочленом. Проще говоря, многочлен это несколько одночленов, соединенных знаком «плюс».

В некоторых многочленах одночлены могут соединяться знаком «минус». Например, 3− 5− 2x. Следует иметь ввиду, что это по-прежнему сумма одночленов. Многочлен 3− 5− 2x это сумма одночленов 3x, −5y и − 2x, то есть 3+ (−5y) + (−2x). После раскрытия скобок образуется многочлен  3− 5− 2x.

3+ (−5y) + (−2x) = 3− 5− 2x

Соответственно, рассматривая по отдельности каждый одночлен многочлена, его нужно рассматривать вместе со знаком, который перед ним располагается. Так, в многочлене 3− 5− 2x минус перед одночленом 5y относится к коэффициенту 5, а минус перед одночленом 2x относится к коэффициенту 2. Чтобы не противоречить определению многочлена, вычитание можно заменять сложением:

3− 5− 2x = 3+ (−5y) + (−2x)

Но это действие нагромождает многочлен скобками, поэтому вычитание на сложение не заменяют, учитывая в будущем, что каждый одночлен многочлена будет рассматриваться вместе со знаком, который перед ним располагается.

Одночлены, из которых состоит многочлен, называют членами многочлена.

Если многочлен состоит из двух членов, то такой многочлен называют двучленом. Например, многочлен x + y является двучленом.

Если многочлен состоит из трёх членов, то такой многочлен называют трехчленом. Например, многочлен x + y + z является трехчленом.

Если какой-нибудь многочлен содержит обычное число, то это число называют свободным членом многочлена. Например, в многочлене 3+ 5+ 7 член 7 является свободным членом. Свободный член многочлена не содержит буквенной части.

Многочленом также является любое числовое выражение. Так, следующие выражения являются многочленами:

2 + 3

5 + 3 + 2

5 − 4 + 9


Сложение многочленов

К многочлену можно прибавить другой многочлен. Например, прибавим к многочлену 2y многочлен 3y.

Заключим в скобки каждый многочлен и соединим их знаком «плюс», указывая тем самым, что мы складываем многочлены:

(2x + y) + (3x + y)

Теперь раскрываем скобки:

2x + y + 3x + y

Далее приведём подобные слагаемые:

2x + y + 3x + y = 5x + 2y

Таким образом, при сложении многочленов 2y и 3y получается многочлен 5x + 2y.

Разрешается также сложение многочленов в столбик. Для этого их следует записать так, чтобы подобные слагаемые располагались друг под другом, затем выполнить самó сложение. Решим предыдущий пример в столбик:

см рис 1

Если в одном из многочленов окажется слагаемое, которое не имеет подобного слагаемого в другом многочлене, оно переносится к результату без изменений. Как говорят при сложении обычных чисел — «сносится».

Например, сложим в столбик многочлены 2x2 + y3 + z + 2 и 5x2 + 2y3. Для начала запишем их так, чтобы подобные слагаемые располагались друг под другом, затем выполним их сложение. Обнаруживаем, что во втором многочлене не содержатся слагаемые, которые можно было бы сложить со слагаемыми z и 2 из первого многочлена. Поэтому слагаемые z и 2 переносятся к результату без изменений (вместе со своими знаками)

см рис 2

Решим этот же пример с помощью скобок:

(2x2 + y3 + z + 2) + (5x2 + 2y3) = 2x2 + y3 + z + 2 + 5x2 + 2y3 = (2x+ 5x2) + (y+ 2y3) + z + 2 = 7x2 + 3y3 + z + 2


Пример 3. Сложить многочлены 7x3 + y + z2 и x3 − z2

Решим этот пример в столбик. Запишем второй многочлен под первым так, чтобы подобные слагаемые располагались друг под другом:

см рис 3

Во втором многочлене не было слагаемого, которого можно было бы сложить со слагаемым y из первого многочлена, поэтому это слагаемое было перенесёно к результату без изменений. А сложение подобных слагаемых z2 и z2 дало в результате 0. Ноль по традиции не записываем. Поэтому окончательный ответ это 8x3 + y.

Решим этот же пример с помощью скобок:

(7x3 + y + z2) + (x3 − z2) = 7x3 + y + z2 + x3 − z2 = (7x+ x3) + (z− z2) + y = 8x3 + y


Вычитание многочленов

Из многочлена можно вычесть другой многочлен. Например, вычтем из многочлена 2y многочлен 3y.

Заключим в скобки каждый многочлен и соединим их знаком «минус», указывая тем самым, что мы выполняем вычитание:

(2x + y) − (3x + y)

Теперь раскроем скобки:

2x + y − 3x − y

Приведём подобные слагаемые. Слагаемые y и −y являются противоположными. Сумма противоположных слагаемых равна нулю

y + (−y) = 0

Приводя подобные слагаемые, мы обычно складываем их. Но в качестве знака операции можно использовать знак одночлена. Так, приводя подобные слагаемые y и −y мы сложили их по правилу приведения подобных слагаемых. Но можно не складывая, записать их друг за другом

y − y

Получится тот же результат, поскольку выражения + (−y) и y − y одинаково равны нулю:

y − y = 0

Возвращаемся к нашему примеру. Вычеркнем члены y и −y:

2x na y - 3x - y пр.в.

А сложение подобных слагаемых 2x и −3x, даст в результате x

2x + (−3x) = −x

Или без сложения, записав члены друг за другом:

2x − 3x = −x

Значит, при вычитании из многочлена (2y) многочлена (3y) получится одночлен x.

Решим этот же пример в столбик:

см рис 4


Пример 2. Вычесть из многочлена 13− 11+ 10z многочлен −15+ 10− 15z

Решим этот пример с помощью скобок, а затем в столбик:

(13− 11+ 10z) − (−15+ 10− 15z) = 13x − 11y + 10z + 15x − 10y + 15z = (13x + 15x) + (−11− 10y) + (10z + 15z) = 28+ (−21y) + 25z = 28x − 21y + 25z

см рис 5

Следует быть внимательным при вычитании в столбик. Если не следить за знаками, вероятность допустить ошибку очень высокá. Нужно учитывать не только знак операции вычитания, но и знак располагающийся перед слагаемым.

Так, в данном примере из слагаемого 10z вычиталось слагаемое −15z

10z − (−15z)

Результат вычисления этого выражения должен быть положительным, поскольку 10z − (−15z) = 10z + 15z.

Складывая или вычитая многочлены при помощи скобок, первый многочлен в скобки можно не заключать. Так, в данном примере из многочлена 13− 11+ 10z требовалось вычесть многочлен −15+ 10− 15z

Вычитание было записано так:

(13− 11+ 10z) − (−15+ 10− 15z)

Но первый многочлен можно не заключать в скобки:

13− 11+ 10z − (−15+ 10− 15z)

Заключение первого многочлена в скобки на первых порах позволяет начинающим наглядно увидеть, что второй многочлен полностью вычитается из первого, а не из определенной его части.


Представление многочлена в виде суммы или разности

Многочлен можно представить в виде суммы или разности многочленов. По сути это обратное действие раскрытию скобок, поскольку идея подразумевает, что имеется некий многочлен, и из него можно образовать сумму или разность многочленов, заключив в скобки некоторые из членов исходного многочлена.

Пусть имеется многочлен 3x + 5y + z + 7. Представим его в виде суммы двух многочленов.

Итак, из членов исходного многочлена нужно образовать два многочлена, сложенные между собой. Давайте заключим в скобки члены 3x и 5x, а также члены z и 7. Далее объединим их с помощью знака «плюс»

(3x + 5y) + (+ 7)

Значение исходного многочлена при этом не меняется. Если раскрыть скобки в получившемся выражении (3x + 5y) + (z + 7), то снова получим многочлен 3x + 5y + z + 7.

(3x + 5y) + (z + 7) = 3x + 5y + z + 7

В скобки также можно было бы заключить члены 3x, 5y, z и прибавить это выражение в скобках к члену 7

(3x + 5y + z) + 7

Представляя многочлен в виде разности многочленов, нужно придерживаться следующего правила. Если члены заключаются в скобки после знака минуса, то этим членам внутри скобок нужно поменять знаки на противоположные.

Вернемся к многочлену 3x + 5y + z + 7. Представим его в виде разности двух многочленов. Давайте заключим в скобки многочлен 3x и 5y, а также z и 7, затем объединим их знаком «минус»

(3x + 5y) − (+ 7)

Но мы видим, что после знака минуса следует заключение членов z и 7 в скобки. Поэтому этим членам нужно поменять знаки на противоположные. Делать это нужно внутри скобок:

(3x + 5y) − (−z − 7)

Заключая члены в скобки, нужно следить за тем, чтобы значение нового выражения тождественно было равно предыдущему выражению. Этим и объясняется замена знаков членов внутри скобок. Если в выражении (3x + 5y) − (−z − 7) раскрыть скобки, то получим изначальный многочлен 3x + 5y + z + 7.

(3x + 5y) − (−z − 7) = 3x + 5y + z + 7

Вообще, представляя многочлен в виде суммы или разности, можно придерживаться следующих правил:

Если перед скобками ставится знак «плюс», то все члены внутри скобок записываются со своими же знаками.

Если перед скобками ставится знак «минус», то все члены внутри скобок записываются с противоположными знаками.

Пример 1. Представить многочлен 3x+ 2x+ 5x− 4 в виде суммы каких-нибудь двучленов:

(3x+ 2x3) + (5x− 4)


Пример 2. Представить многочлен 3x+ 2x+ 5x− 4 в виде разности каких-нибудь двучленов:

(3x+ 2x3) − (−5x+ 4)

Перед вторыми скобками располагался минус, поэтому члены 5x2 и −4 были записаны с противоположными знаками.


Многочлен и его стандартный вид

Многочлен, как и одночлен, можно привести к стандартному виду. В результате получается упрощенный многочлен, с которым удобно работать.

Чтобы привести многочлен к стандартному виду, нужно привести подобные слагаемые в этом многочлене. Подобные слагаемые в многочлене называют подобными членами многочлена, а приведение подобных слагаемых в многочлене — приведением его подобных членов.

Подобные члены многочлена это члены, имеющие одинаковую буквенную часть.

Приведём многочлен 2+ 4xy2 + − xy2 к стандартному виду. Для этого приведём его подобные члены. Подобными членами в этом многочлене являются 2x и x, а также 4xy2 и xy2.

многочлены ппс пр 1

В результате получили многочлен 3x + 3xy2, который не имеет подобных членов. Такой вид многочлена называют многочленом стандартного вида.

Как и у одночлена, у многочлена имеется степень. Чтобы определить степень многочлена, сначала его нужно привести к стандартному виду, затем выбрать тот одночлен, степень которого является наибольшей из всех.

В предыдущем примере мы привели многочлен 2+ 4xy− xy2 к стандартному виду. В результате получили многочлен 3+ 3xy2. Он состоит из двух одночленов. Степенью первого одночлена является 1, а степенью второго одночлена является 3. Наибольшая из этих степеней является 3. Значит, многочлен 3+ 3xy2 является многочленом третьей степени.

А поскольку многочлен 3+ 3xy2 тождественно равен предыдущему многочлену 2+ 4xy− xy2, то и этот предыдущий многочлен является многочленом третьей степени.

Степенью многочлена стандартного вида называют наибольшую из степеней, входящих в него одночленов.

В некоторых многочленах прежде всего требуется привести к стандартному виду одночлены, входящие в него, и только потом приводить сам многочлен к стандартному виду.

Например, приведем многочлен 3xx+ 3xx− 5x2x− 5x2x к стандартному виду. Этот многочлен состоит из одночленов, которые не приведены к стандартному виду. Сначала приведём их к стандартному виду:

3xx+ 3xx− 5x2x− 5x2x = 3x+ 3x4 − 5x5 − 5x3

Теперь получившийся многочлен 3x+ 3x− 5x− 5x3 можно привести к стандартному виду. Для этого приведем его подобные члены. Подобными являются члены 3x5 и −5x5. Больше подобных членов нет. Члены 3x4 и −5x3 будут переписаны без изменений:

3xx+ 3xx− 5x2x− 5x2x = 3x+ 3x4 − 5x5 − 5x3 = −2x+ 3x− 5x3


Пример 2. Привести многочлен 3ab + 4cc ab + 3c2 к стандартному виду.

Сначала приведем одночлен 4cc, входящий в исходный многочлен, к стандартному виду, получим 4с2

3ab + 4cc ab + 3c2 = 3ab + 4с2 ab + 3c2

Далее приведём подобные члены:

3ab + 4cc ab + 3c2 = 3ab + 4с2 ab + 3c2 = 4ab + 7c2


Пример 3. Привести многочлен 4x− 4− x+ 17− y к стандартному виду.

Подобными членами в данном многочлене являются 4x2 и x2, а также −4y, 17y и −y. Приведем их:

4x− 4− x+ 17− y = 3x+ 12y

Приводя подобные члены, можно использовать скобки. Для этого подобные члены следует заключить в скобки, затем объединить выражения в скобках с помощью знака «плюс».

Решим предыдущий пример с помощью скобок. Подобными членами в нём были 4x2 и x2, а также −4y, 17y и −y. Заключим их в скобки и объединим с помощью знака «плюс»

4x− 4− x+ 17− y = (4x− x2) + (−4+ 17− y)

Теперь в скобках выполним приведение подобных членов:

4x− 4− x+ 17− y = (4x− x2) + (−4+ 17− y) = (3x2) + (12y)

В получившемся выражении (3x2) + (12y) раскроем скобки:

4x− 4− x+ 17− y = (4x− x2) + (−4+ 17− y) = (3x2) + (12y) = 3x+ 12y

Конечно, такой подход нагромождает выражение, но зато позволяет свести к минимуму допущение ошибок.


Пример 4. Привести многочлен 12x− 9− 9x+ 6y к стандартному виду.

Заключим в скобки подобные слагаемые и объединим их с помощью знака «плюс»

12x− 9− 9x+ 6y = (12x− 9x2) + (−9+ 6y)

Далее вычисляем содержимое скобок:

12x− 9− 9x+ 6y = (12x− 9x2) + (−9+ 6y) = (3x2) + (−2y)

Избавляемся от скобок при помощи раскрытия:

12x− 9− 9x+ 6y = (12x− 9x2) + (−9+ 6y) = (3x2) + (−2y) = 3x− 2y


Изменение порядка следования членов

Рассмотрим двучлен x − y. Как сделать так, чтобы член y располагался первым, а член x вторым?

Многочлен это сумма одночленов. То есть исходный двучлен двучлен x − y является суммой x и −y

x + (−y)

От перестановки мест слагаемых сумма не меняется. Тогда x и −y можно поменять местами

−y + x


Пример 2. В двучлене −y − x поменять местами члены.

Двучлен −y − x это сумма членов −y и −x

y + (−x)

Тогда согласно переместительному закону сложения получим (−x) + (−y). Избавим выражение от скобок:

−x − y

Таким образом, решение можно записать покороче:

−y − x = −x − y


Пример 3. Упорядочить члены многочлена x + xy3 − x2 в порядке убывания степеней.

Наибольшую степень в данном многочлене имеет член xy3, далее x2, а затем x. Запишем их в этом порядке:

x + xy3 − x2 = xy− xx


Умножение одночлена на многочлен

Одночлен можно умножить на многочлен. Чтобы умножить одночлен на многочлен, нужно этот одночлен умножить на каждый член многочлена и полученные произведения сложить.

Например, умножим одночлен 3x2 на многочлен 2+ 5. При умножении одночлена на многочлен, последний нужно заключать в скобки:

3x2(2+ 5)

Теперь умножим одночлен 3x2 на каждый член многочлена 2+ 5. Получающиеся произведения будем складывать:

3x2(2+ 5) = 3x2 × 2+ 3x× + 3x× 5

Вычислим получившиеся произведения:

3x2(2+ 5) = 3x2 × 2+ 3x× + 3x× 5 = 6x+ 3x2+ 15x2

Таким образом, при умножении одночлена 3x2 на многочлен 2+ 5 получается многочлен 6x+ 3x2+ 15x2.

Умножение желательно выполнять в уме. Так решение получается короче:

3x2(2+ 5) = 6x+ 3x2+ 15x2

В некоторых примерах одночлен располагается после многочлена. В этом случае опять же каждый член многочлена нужно перемножить с одночленом и полученные произведения сложить.

Например, предыдущий пример мог быть дан в следующем виде:

(2+ 5) × 3x2

В этом случае мы умножили бы каждый член многочлен (2+ 5) на одночлен 3x2 и сложили бы полученные результаты:

(2+ 5) × 3x2 = 2× 3x2 + × 3x2 + 5 × 3x2 = 6x+ 3x2y + 15x2

Умножение одночлена на многочлен (или умножение многочлена на одночлен) основано на распределительном законе умножения.

a(b + c) = ab + ac

То есть чтобы умножить число a на сумму b + c, нужно число a умножить на каждое слагаемое суммы b + c, и полученные произведения сложить.

Вообще, умножение одночлена на многочлен, да и распределительный закон умножения имеют геометрический смысл.

Допустим, имеется прямоугольник со сторонами a и b

пр ab plus c рис 2

Увеличим сторону b на c

пр ab plus c рис 3

Достроим отсутствующую сторону и закрасим для наглядности получившийся прямоугольник:

пр ab plus c рис 4

Теперь вычислим площадь получившегося большого прямоугольника. Он включает в себя желтый и серый прямоугольники.

Чтобы вычислить площадь получившегося большого прямоугольника, можно по отдельности вычислить площади желтого и серого прямоугольников и сложить полученные результаты. Площадь желтого прямоугольника будет равна ab, а площадь серого ac

ab + ac

А это всё равно что длину большого прямоугольника умножить на его ширину. Длина в данном случае это b + c, а ширина это a

(b + c) × a

или ширину умножить на длину, чтобы расположить буквы a, b и c в алфавитном порядке:

a × (b + c)

Таким образом, выражения a × (b + c) и ab + ac равны одному и тому же значению (одной и той же площади)

a × (b + c) = ab + ac

К примеру, пусть у нас имеется прямоугольник длиной 4 см, и шириной 2 см, и мы увеличили длину на 2 см

пр 42 plus 2 рис 1

Тогда площадь данного прямоугольника будет равна 2 × (4 + 2) или сумме площадей желтого и серого прямоугольников: 2 × 4 2 × 2. Выражения 2 × (4 + 2) и 2 × 4 2 × 2 равны одному и тому же значению 12

2 × (4 + 2) = 12

2 × 4 + 2 × 2 = 12

Поэтому,

2 × (4 + 2) = 2 × 4 + 2 × 2 = 12.

Действительно, в получившемся большом прямоугольнике содержится двенадцать квадратных сантиметров:

пр 42 plus 2 финал


Пример 2. Умножить одночлен 2a на многочлен a− 7− 3

Умножим одночлен 2a на каждый член многочлена a− 7− 3 и сложим полученные произведения:

2a(a− 7− 3) = 2a × a2 + 2a × (−7a) + 2a × (−3) = 2a3 + (−14a2) + (−6a) = 2a− 14a− 6a

Или покороче:

2a(a− 7− 3) = 2a− 14a− 6a


Пример 3. Умножить одночлен −a2b2 на многочлен a2b− a− b2

Умножим одночлен −a2b2 на каждый член многочлена a2b− a− b2 и сложим полученные произведения:

-a2b2 na a2b2 - a2 - b2 решение

Или покороче:

-a2b2 na a2b2 - a2 - b2 решение 2


Пример 4. Выполнить умножение −1,4x2y6(5x3− 1,5xy− 2y3)

Умножим одночлен −1,4x2y6 на каждый член многочлена 5x3− 1,5xy− 2y3 и сложим полученные произведения:

-14x2y6 na 5x3y-15xy2-2y3 решение

Или покороче:

-14x2y6 na 5x3y-15xy2-2y3 решение 2


Пример 5. Выполнить умножение 1na2xy na 2na3x2-3na4xy na 4na5y2 пример

Умножим одночлен -1на2xy на каждый член многочлена 2na3x2-3na4xy na 4na5y2 без скобок и сложим полученные произведения:

1na2xy na 2na3x2-3na4xy na 4na5y2 решение

Или покороче:

1na2xy na 2na3x2-3na4xy na 4na5y2 решение 2

Выполняя короткие решения, результаты записывают сразу друг за другом вместе со знаком полученного члена. Рассмотрим поэтапно, как было выполнено короткое решение данного примера.

Сначала одночлен -1на2xy нужно умножить на первый член многочлена 2na3x2-3na4xy na 4na5y2, то есть на 2na3x2. Умножение выполняется в уме. Получается результат -1na3x3y. В исходном выражении ставим знак равенства и записываем первый результат:

1na2xy na 2na3x2-3na4xy na 4na5y2 шаг 1

После этого в исходном выражении никаких знаков ставить нельзя. Нужно сразу приступать к следующему умножению.

Следующим шагом будет умножение одночлена -1на2xy на второй член многочлена 2na3x2-3na4xy na 4na5y2, то есть на -3na4xy. Получается результат 3на8x2y2. Этот результат является положительным, то есть со знаком плюс 3на8x2y2 с плюсом. В исходном выражении этот результат записывается вместе с этим плюсом сразу после члена -1na3x3y

1na2xy na 2na3x2-3na4xy na 4na5y2 шаг 2

После этого в исходном выражении никаких знаков ставить нельзя. Нужно сразу приступать к следующему умножению.

Следующим шагом будет умножение одночлена -1на2xy на третий член многочлена 2na3x2-3na4xy na 4na5y2, то есть на 4na5y2. Получается результат -2на5xy3. Этот результат является отрицательным, то есть со знаком минус. В исходном выражении этот результат записывается вместе со своим минусом сразу после члена 3на8x2y2 с плюсом

1na2xy na 2na3x2-3na4xy na 4na5y2 шаг 3


Иногда встречаются выражения, в которых сначала нужно выполнить умножение одночлена на многочлен, затем опять на одночлен. Например:

2(a + b)c

В этом примере сначала член 2 умножается на многочлен (a + b), затем результат умножается на c. Для начала выполним умножение 2 на (a + b) и заключим полученный результат в скобки

2(a + b)c = (2+ 2b)с

Скобки говорят о том, что результат умножения 2 на (a + b) полностью умножается на c. Если бы мы не заключили скобки 2+ 2b, то получилось бы выражение 2a + 2b × с, в котором на с умножается только 2b. Это привело бы к изменению значения изначального выражения, а это недопустимо.

Итак, получили (2a + 2b)с. Теперь умножаем многочлен (2a + 2b) на одночлен c и получаем окончательный результат:

2(a + b)c = (2+ 2b)с = 2ac + 2bc

Умножение также можно было бы выполнить сначала умножив (a + b) на с и полученный результат перемножить с членом 2

2(a + b)c = 2(ac + bc) = 2ac + 2bc

В данном случае срабатывает сочетательный закон умножения, который говорит о том, что если выражение состоит из нескольких сомножителей, то произведение не будет зависеть от порядка действий:

a × b × с = (a × b) × с = a × (b × с)

То есть умножение можно выполнять в любом порядке. Это не приведёт к изменению значения изначального выражения.


Умножение многочлена на многочлен

Чтобы умножить многочлен на многочлен, нужно каждый член первого многочлена умножить на каждый член второго многочлена и полученные произведения сложить.

Например, умножим многочлен + 3 на + 4

Заключим в скобки каждый многочлен и объединим их знаком умножения ×

(x + 3) × (y + 4)

Либо запишем их друг за другом без знака ×. Это тоже будет означать умножение:

(x + 3)(y + 4)

Теперь умножим каждый член первого многочлена (+ 3) на каждый член второго многочлена (+ 4). Здесь опять же будет применяться распределительный закон умножения:

(a + b)c= ac + bc

Отличие в том, что у нас вместо переменной c имеется многочлен (+ 4), состоящий из членов y и 4. Наша задача умножить (+ 3) сначала на y, затем на 4. Чтобы не допустить ошибку, можно представить, что члена 4 пока не существует вовсе. Для этого его можно закрыть рукой:

x na 3 na y na 4 step 1

Получаем привычное для нас умножение многочлена на одночлен. А именно, умножение многочлена (+ 3) на одночлен y. Выполним это умножение:

(x + 3)(y + 4) = xy + 3y

Мы умножили (+ 3) на y. Теперь осталось умножить (x + 3) на 4. Для этого умножаем каждый член многочлена (x + 3) на одночлен 4. На этот раз в исходном выражении (+ 3)(+ 4) рукой закроем y, поскольку на него мы уже умножали многочлен (+ 3)

x na 3 na y na 4 step 2

Получаем умножение многочлена (+ 3) на одночлен 4. Выполним это умножение. Умножение необходимо продолжать в исходном примере (+ 3)(+ 4) = xy + 3y

(+ 3)(+ 4) = xy + 3y + 4x + 12

Таким образом, при умножении многочлена (+ 3) на многочлен (+ 4) получается многочлен xy + 3y + 4x + 12.

По другому умножение многочлена на многочлен можно выполнить ещё так: каждый член первого многочлена умножить на второй многочлен целиком и полученные произведения сложить.

Решим предыдущий пример, воспользовавшись этим способом. Умножим каждый член многочлена + 3 на весь многочлен + 4 целиком и сложим полученные произведения:

(+ 3)(+ 4) = x(+ 4) + 3(+ 4)

В результате приходим к умножению одночлена на многочлен, которое мы изучили ранее. Выполним это умножение:

(+ 3)(+ 4) = x(+ 4) + 3(+ 4) = xy + 4x + 3y + 12

Получится тот же результат что и раньше, но члены полученного многочлена будут располагаться немного по другому.

Умножение многочлена на многочлен имеет геометрический смысл. Допустим, имеется прямоугольник, длина которого a и ширина b

пр ab na xy рис 1

Площадь этого прямоугольника будет равна a × b.

Увеличим длину данного прямоугольника на x, а ширину на y

пр ab na xy рис 2

Достроим отсутствующие стороны и закрасим для наглядности получившиеся прямоугольники:

пр ab na xy рис 3

Теперь вычислим площадь получившегося большого прямоугольника. Для этого вычислим по отдельности площадь каждого прямоугольника, входящего в этот большой прямоугольник и сложим полученные результаты. Площадь жёлтого прямоугольника будет равна ab, площадь серого xb, площадь фиолетового ay, площадь розового xy

ab + xb + ay + xy

А это всё равно что умножить длину получившегося большого прямоугольника на его ширину. Длина в данном случае это a + x, а ширина b + y

(a + x)(b + y)

То есть выражения (a + x)(b + y) и ab + xb + ay + xy тождественно равны

(a + x)(b + y) = ab + xb + ay + xy

Представим, что у нас имелся прямоугольник, длиной 6 см и шириной 3 см, и мы увеличили его длину на 2 см, а ширину на 1 см

пр 62 и 31 шаг 1

Достроим отсутствующие стороны и закрасим для наглядности получившиеся прямоугольники:

пр 62 и 31 шаг 2

Площадь получившегося большого прямоугольника будет равна (6 + 2)(3 + 1) или сумме площадей прямоугольников, входящих в большой прямоугольник: 6 × 3 + 2 × 3 + 6 × 1 + 2 × 1. В обоих случаях получим один и тот же результат 32

(6 + 2)(3 + 1) = 32

6 × 3 + 2 × 3 + 6 × 1 + 2 × 1 = 32

Поэтому,

(6 + 2)(3 + 1) = 6 × 3 + 2 × 3 + 6 × 1 + 2 × 1 = 18 + 6 + 6 + 2 = 32

Действительно, в получившемся большом прямоугольнике содержится тридцать два квадратных сантиметра:

пр 62 и 31 шаг 3


Пример 2. Умножить многочлен a + b на c + d

Заключим исходные многочлены в скобки и запишем их друг за другом:

(a + b)(c + d)

Теперь умножим каждый член первого многочлена (a + b) на каждый член второго многочлена (c + d)

(a + b)(c + d) = ac + bc + ad + bd


Пример 4. Выполнить умножение (−− 2y)(+ 2y2)

Умножим каждый член многочлена (−− 2y) на каждый член многочлена (+ 2y2)

(−− 2y)(+ 2y2) = −x− 2xy − 2xy− 4y3

Результат перемножения членов нужно записывать вместе со знаками этих членов. Рассмотрим поэтапно, как был решён данный пример.

Итак, требуется умножить многочлен (−− 2y) на многочлен (+ 2y2). Сначала надо умножить многочлен (−− 2y) на первый член многочлена (+ 2y2), то есть на x.

Умножаем x на x, получаем x2. В исходном выражении (−− 2y)(+ 2y2) ставим знак равенства и записываем x2

(−− 2y)(+ 2y2) = −x2

После этого в исходном выражении никаких знаков ставить нельзя. Нужно сразу приступать к следующему умножению. А именно умножению −2y на x . Получится −2xy. Этот результат является отрицательным, то есть со знаком минус. В исходном выражении записываем результат −2xy сразу после члена x2

(−− 2y)(+ 2y2) = −x− 2xy

Теперь умножаем многочлен (−− 2y) на второй член многочлена (x + 2y2), то есть на 2y2

Умножаем x на 2y2, получаем −2xy2. В исходном выражении записываем этот результат сразу после члена −2xy

(−− 2y)(+ 2y2) = −x− 2xy − 2xy2

Приступаем к следующему умножению. А именно умножению −2y на 2y2. Получаем −4y3. В исходном выражении этот результат записываем вместе со своим минусом сразу после члена −2xy2

(−− 2y)(+ 2y2) = −x− 2xy − 2xy2 − 4y3


Пример 5. Выполнить умножение (4a2 + 2ab − b2)(2a − b)

Умножим каждый член многочлена (4a2 + 2ab − b2) на каждый член многочлена (2a − b)

4a2na2ab-b2 na2a-b решение 0

В получившемся выражении можно привести подобные слагаемые:

4a2na2ab-b2 na2a-b решение


Пример 6. Выполнить умножение −(a + b)(с − d)

В этот раз перед скобками располагается минус. Этот минус является коэффициентом −1. То есть исходное выражение является произведением трёх сомножителей: −1, многочлена (a + b) и многочлена (с − d).

−1(a + b)(с − d)

Согласно сочетательному закону умножения, если выражение состоит из нескольких сомножителей, то его можно вычислять в любом порядке.

Поэтому сначала можно перемножить многочлены (b) и (с − d) и полученный в результате многочлен умножить на −1. Перемножение многочленов (a + b) и (с − d) нужно выполнять в скобках

−1(a + b)(с − d) = −1(ac + bc − ad − bd)

Теперь перемножаем −1 и многочлен (ac + bc − ad − bd). В результате все члены многочлена (ac + bc − ad − bd) поменяют свои знаки на противоположные:

−1(a + b)(с − d) = −1(ac + bc − ad − bd) = −ac − bc + ad + bd

Либо можно было перемножить −1 с первым многочленом (a + b) и результат перемножить с многочленом (с − d)

−1(a + b)(с − d) = (−a − b)(с − d) = −ac − bc + ad + bd


Пример 7. Выполнить умножение x2(+ 5)(− 3)

Сначала перемножим многочлены (+ 5) и (− 3), затем полученный в результате многочлен перемножим с x2

x2 na xna5 na x-3 решение


Пример 8. Выполнить умножение (+ 1)(+ 2)(+ 3)

Сначала перемножим многочлены (+ 1) и (+ 2), затем полученный многочлен перемножим с многочленом (+ 3)

Итак, перемножим (+ 1) и (+ 2)

ana1 na ana2 na ana3 решение 0

Полученный многочлен (a2 + + 2+ 2) перемножим с (+ 3)

ana1 na ana2 na ana3 решение

Если быстрое перемножение многочленов на первых порах даётся тяжело, можно воспользоваться подробным решением, суть которого заключается в том, чтобы записать, как каждый член первого многочлена умножается на весь второй многочлен целиком. Такая запись хоть и занимает место, но позволяет свести к минимуму допущение ошибок.

Например, выполним умножение (a + b)(c + d)

Запишем как каждый член многочлена a + b умножается на весь многочлен c + d целиком. В результате придём к умножению одночлена на многочлен, выполнять которое проще:

(a + b)(c + d) = a(с + d) + b(с + d) = aс + ad + bс + bd

Такая запись удобна при умножении двучлена на какой-нибудь многочлен, в котором содержится больше двух членов. Например:

(x + y)(x+ 2xy y2) = x(x+ 2xy + y2) + y(x+ 2xy + y2) = x+ 2x2y + xyx2y + 2xyy3 = x+ 3x2+ 3xyy3

Или при перемножении многочленов, содержащих больше двух членов. Например, умножим многочлен x+ 2x − 5 на многочлен x− x + 2

(x+ 2x − 5)(x− x + 2)

Запишем перемножение исходных многочленов в виде умножения каждого члена многочлена x+ 2x − 5 на многочлен x− x + 2.

ум пример 11 шаг 1

Получили привычное для нас умножения одночленов на многочлены. Выполним эти умножения:

ум пример 11 шаг 2

В получившемся многочлене приведём подобные члены:

ум пример 11 шаг 3

Одночлены, входящие в получившийся многочлен, расположим в порядке убывания степеней. Делать это необязательно. Но такая запись будет красивее:

ум пример 11 решение


Вынесение общего множителя за скобки

Мы уже учились выносить общий множитель за скобки в простых буквенных выражениях. Теперь мы немного углубимся в эту тему, и научимся выносить общий множитель за скобки в многочлене. Принцип вынесения будет таким же, как и в простом буквенном выражении. Небольшие трудности могут возникнуть лишь с многочленами, состоящими из степеней.

Рассмотрим простой двучлен 6xy + 3xz. Вынесем в нём общий множитель за скобки. В данном случае за скобки можно вынести общий множитель 3x. Напомним, что при вынесении общего множителя за скобки, каждое слагаемое исходного выражения надо разделить на этот общий множитель:

6xy na 3xz пример

Или покороче:

6xy na 3xz решение 2

В результате получили 3x(2z). При этом в скобках образовался другой более простой многочлен (2z). Выносимый за скобки общий множитель выбирают так, чтобы в скобках остались члены, которые не содержат общего буквенного множителя, а модули коэффициентов этих членов не имели общего делителя, кроме единицы.

Поэтому в приведенном примере за скобки был вынесен общий множитель 3x. В скобках образовался многочлен 2z, модули коэффициентов которого не имеют общего делителя кроме единицы. Это требование можно выполнить, если найти наибольший общий делитель (НОД) модулей коэффициентов исходных членов. Этот НОД станóвится коэффициентом общего множителя, выносимого за скобки. В нашем случае исходный многочлен был 6xy + 3xz. Коэффициенты исходных членов это числа 6 и 3, а их НОД равен 3.

А буквенную часть общего множителя выбирают так, чтобы члены в скобках не имели общих буквенных множителей. В данном случае это требование выполнилось легко. Общий буквенный множитель был виден невооруженным глазом — это был множитель x.


Пример 2. Вынести общий множитель за скобки в многочлене xx + xy

Все члены данного многочлены имеют коэффициент единицу. Наибольший общий делитель модулей из этих единиц есть единица. Поэтому числовая часть выносимого за скобки множителя будет единицей. Но единицу в качестве коэффициента не записывают.

Далее выбираем буквенную часть общего множителя. Прежде всего надо понимать, что любой член, входящий в многочлен, является одночленом. А одночлен это произведение чисел, переменных и степеней. Даже если членом многочлена является обычное число, его всегда можно представить в виде произведения единицы и самого этого числа. Например, если в многочлене содержится число 5, его можно представить в виде 1 × 5. Если в многочлене содержится число 8, то его можно представить в виде произведения множителей 2 × 2 × 2 (или как 2 × 4)

С переменными такая же ситуация. Если в многочлене содержится член, являющийся переменной или степенью, их всегда можно представить в виде произведения. К примеру, если многочлен содержит одночлен x, его можно представить в виде произведения 1 × x. Если же многочлен содержит одночлен x3, его можно представить в виде произведения xxx.

Одночлены, из которых состоит многочлен xx + xy, можно разложить на множители так, чтобы мы смогли увидеть буквенный сомножитель, который является общим для всех членов.

Итак, первый член многочлена xx + xy, а именно x2 можно представить в виде произведения x × x. Второй член x можно представить в виде 1 × x. А третий член xy оставим без изменения, или для наглядности перепишем его с помощью знака умножения x × y

xx na x1 na xy step 1

Каждый член многочлена представлен в виде произведения множителей, из которых состоят эти члены. Легко заметить, что во всех трёх произведениях общим сомножителем является x. Выделим его:

xx na x1 na xy step 2

Этот множитель x и вынесем за скобки. Опять же при вынесении общего множителя за скобки каждое слагаемое исходного выражения делим на этот общий множитель. В нашем случае каждый член многочлена x × x + 1 × x + x × y нужно разделить на общий множитель x

xx na x1 na xy step 3

Значит, при вынесении общего множителя за скобки в многочлене xx + xy, получается x(x + 1 + y)

xx na x1 na xy step 4

Или покороче:

xx na x1 na xy step 5

В результате в скобках остаются члены, которые не имеют общих буквенных сомножителей, а модули коэффициентов этих членов не имеют общих делителей, кроме 1.

Пример 2. Вынести общий множитель за скобки в многочлене 15x2y+ 12xy+ 3xy2

Определим коэффициент общего множителя, выносимого за скобки. Наибольший общий делитель модулей коэффициентов 15, 12 и 3 это число 3. Значит, число 3 будет коэффициентом общего множителя, выносимого за скобки.

Теперь определим буквенную часть общего множителя, выносимого за скобки. Её нужно выбирать так, чтобы в скобках остались члены, которые не содержат общего буквенного множителя.

Перепишем буквенные части исходного многочлена 15x2y+ 12xy+ 3xy2 в виде разложения на множители. Это позволит хорошо увидеть, что именно можно вынести за скобки:

15xxyyy na 12xyy na 3xyy

Видим, что среди буквенных частей общим множителем является xyy, то есть xy2. Если вынести этот множитель за скобки, в скобках останется многочлен, не имеющий общего буквенного множителя.

В итоге общим множителем, выносимым за скобки, будет множитель 3xy2

15xxyyy na 12xyy na 3xyy решение

Или покороче:

15xxyyy na 12xyy na 3xyy решение 2

Для проверки можно выполнить умножение 3xy2(5xy + 4 + 1). В результате должен получиться многочлен 15x2y+ 12xy+ 3xy2

3xy2(5xy + 4 + 1) = 3xy× 5xy + 3xy× 4 + 3xy× 1 = 15x2y+ 12xy+ 3xy2


Пример 3. Вынести общий множитель за скобки в выражении xx

В данном случае за скобки можно вынести x

x2 na x решение

Это потому что первый член x2 можно представить как xx. А второй член x представить как 1 × x

x2 + x = xx + 1 × x 

Не следует на письме подробно расписывать содержимое каждого члена, разлагая его на множители. Это легко делается в уме.


Пример 4. Вынести общий множитель за скобки в многочлене 5y2 − 15y

В данном случае за скобки можно вынести 5y. Наибольший общий делитель модулей коэффициентов 5 и 15 это число 5. Среди буквенных множителей общим является y

5y2 -15y решение


Пример 5. Вынести общий множитель за скобки в многочлене 5y2 − 15y3

В данном примере за скобки можно вынести 5y2. Наибольший общий делитель модулей коэффициентов 5 и 15 это число 5. Среди буквенных множителей общим является y2

5y2 -15y2 решение


Пример 6. Вынести общий множитель за скобки в многочлене 20x4 − 25x2y2 − 10x3

В данном примере за скобки можно вынести 5x2. Наибольший общий делитель модулей коэффициентов 20, −25 и −10 это число 5. Среди буквенных множителей общим является x2

20x4 - 25x2y2 - 10x3 решение


Пример 7. Вынести общий множитель за скобки в многочлене aa+ 1

Второй член a+ 1 представляет собой произведение из am и a, поскольку a× a+ 1

Заменим в исходном примере член a+ 1 на тождественно равное ему произведение a× a. Так проще будет увидеть общий множитель:

avm na a v m na 1 step 2

Теперь можно увидеть, что общим множителем является am. Его и вынесем за скобки:

avm na a v m na 1 step 3


Проверка на тождественность

Решение задачи с многочленами порой растягивается на несколько строк. Каждое следующее преобразование должно быть тождественно равно предыдущему. Если возникают сомнения в правильности своих действий, то можно подставить произвольные значения переменных в исходное и полученное выражение. Если исходное и полученное выражение будут равны одному и тому же значению, то можно быть уверенным, что задача была решена правильно.

Допустим, нам нужно вынести общий множитель за скобки в следующем многочлене:

2x + 4x2

В данном случае за скобки можно вынести общий множитель 2x

2x + 4x2 = 2x(1 + 2x)

Представим, что мы не уверены в таком решении. В этом случае нужно взять любое значение переменной x и подставить его сначала в исходное выражение 2+ 4x2, затем в полученное 2x(1 + 2x). Если в обоих случаях результат будет одинаковым, то это будет означать, что задача решена правильно.

Возьмём произвольное значение x и подставим его в исходное выражение 2+ 4x2. Пусть = 2. Тогда получим:

2+ 4x2 = 2 × 2 + 4 × 22 = 4 + 16 = 20

Теперь подставим значение 2 в преобразованное выражение 2x(1 + 2x)

2x(1 + 2x) = 2 × 2 × (1 + 2 × 2) = 4 × 5 = 20

То есть при = 2 выражения 2+ 4x2 и 2x(1 + 2x) равны одному и тому же значению. Это значит, что задача была решена правильно. Тоже самое будет происходить и при других значениях переменных x. Например, проверим наше решение при = 1

2+ 4x2 = 2 × 1 + 4 × 12 = 2 + 4 = 6
2x(1 + 2x) = 2 × 1 × (1 + 2 × 1) = 2 × 3 = 6


Пример 2. Вычесть из многочлена 5x− 3+ 4 многочлен 4x− x и проверить полученный результат, подставив вместо переменной x произвольное значение.

Выполним вычитание:

многочлены рис 1

Мы выполнили два преобразования: cначала раскрыли скобки, а затем привели подобные члены. Теперь проверим эти два преобразования на тождественность. Пусть x = 2. Подставим это значение сначала в исходное выражение, а затем в преобразованные:

м рис 1

Видим, что при каждом преобразовании значение выражения при x = 2 не менялось. Это значит, что задача была решена правильно.


Задания для самостоятельного решения

Задание 1. Сложить многочлены 8x + 11 и 7x + 5
Решение:
(8x + 11) + (7x + 5) = 8+ 11 + 7+ 5 = 15x + 16
Задание 2. Вычесть из многочлена 8x + 11 многочлен 7x + 5
Решение:
(8x + 11) − (7x + 5) = 8+ 11 − 7x − 5 = x + 6
Задание 3. Выполнить сложение
8+ (3+ 5a)
Решение:
8+ (3+ 5a) = 8+ 3+ 5= 13+ 3b
Задание 4. Выполнить сложение
Решение:
Задание 5. Выполнить сложение
Решение:
Задание 6. Выполнить сложение
Решение:
Задание 7. Приведите следующий многочлен к стандартному виду:
Решение:
Задание 8. Приведите следующий многочлен к стандартному виду:
Решение:
Задание 9. Упростите следующее выражение:
Решение:
Задание 10. Упростите следующее выражение:
Решение:
Задание 11. Упростите следующее выражение:
Решение:
Задание 12. Представьте многочлен 5a2 − 2a − 3ab + b2 в виде суммы двух слагаемых, одно из которых 5a² − 2a
Решение:
5a2 − 2a − 3ab + b2 = (5a2 − 2a) + (−3ab + b2)
Задание 13. В многочлене 2x3 + 5x2y − 4xy2 − y3 заключить крайние члены в скобки со знаком плюс (+) перед ними, а средние члены заключить в скобки со знаком минус (−) перед ними.
Решение:
2x3 + 5x2y − 4xy2 − y3 = (2x3 − y3) − (−5x2y + 4xy²)
Задание 14. Не изменяя значения выражения 2a3 − 3a2+ 3ab2 − b3, заключите его в скобки, поставив перед скобками знак (−)
Решение:
2a3 − 3a2+ 3ab2 − b3−(−2a3 + 3a2b − 3ab2 + b3)
Задание 15. Представьте трёхчлен 2a − b + 4 в виде разности двух выражений с уменьшаемым 2a
Решение:
2a − b + 4 = 2a − (b − 4)
Задание 16. Привести подобные слагаемые в следующем многочлене:
Решение:
Задание 17. Выполните умножение одночлена на многочлен:
Решение:
Задание 18. Выполните умножение одночлена на многочлен:
Решение:
Задание 19. Выполните умножение одночлена на многочлен:
Решение:
Задание 20. Выполните умножение одночлена на многочлен:
Решение:
Задание 21. Выполните умножение одночлена на многочлен:
Решение:
Задание 22. Выполните умножение одночлена на многочлен:
Решение:
Задание 23. Выполните умножение одночлена на многочлен:
Решение:
Задание 24. Выполните умножение одночлена на многочлен:
Решение:
Задание 25. Выполните умножение одночлена на многочлен:
Решение:
Задание 26. Выполните умножение многочлена на многочлен:
Решение:
Задание 27. Выполните умножение многочлена на многочлен:
Решение:
Задание 28. Выполните умножение многочлена на многочлен:
Решение:
Задание 29. Выполните умножение многочлена на многочлен:
Решение:
Задание 30. Выполните умножение многочлена на многочлен:
Решение:
Задание 31. Выполните умножение многочлена на многочлен:
Решение:
Задание 32. Выполните умножение многочлена на многочлен:
Решение:
Задание 33. Выполните умножение многочлена на многочлен:
Решение:
Задание 34. Выполните умножение многочлена на многочлен:
Решение:
Задание 35. Выполните умножение многочлена на многочлен:
Решение:
Задание 36. В многочлене 6+ 12 вынесите общий множитель за скобки
Решение:
6+ 12 = 6(+ 2)
Задание 37. В многочлене 5mn − 5m вынесите общий множитель за скобки
Решение:
5mn − 5= 5m(n − 1)
Задание 38. В многочлене x3 − x2 вынесите общий множитель за скобки
Решение:
x3 − x2x2(x − 1)
Задание 39. В многочлене 3x2 − 6x3 вынесите общий множитель за скобки
Решение:
3x2 − 6x3= 3x2(1 − 2x)
Задание 40. В многочлене x4 − x2 вынесите общий множитель за скобки
Решение:
x4 − x2 = x2(x2 − 1)
Задание 41. В многочлене x2y − xy2 вынесите общий множитель за скобки
Решение:
x2y − xy2= xy(x − y)
Задание 42. В многочлене a3b2 + a2b3 вынесите общий множитель за скобки
Решение:
a3b2 + a2b3 a2b2(a + b)
Задание 43. В многочлене a8b2 + ab4 вынесите общий множитель за скобки
Решение:
a8b2 + ab4ab2(a7 + b2)
Задание 44. Вынесите общий множитель за скобки в следующем многочлене:
Решение:
Задание 45. Вынесите общий множитель за скобки в следующем многочлене:
Решение:
Задание 46. Вынесите общий множитель за скобки в следующем многочлене:
Решение:
Задание 47. Вынесите общий множитель за скобки в следующем многочлене:
Решение:
Задание 48. Вынесите общий множитель за скобки в следующем многочлене:
Решение:
Задание 49. Вынесите общий множитель за скобки в следующем многочлене:
Решение:
Задание 50. Вынесите общий множитель за скобки в следующем многочлене:
Решение:
Задание 51. Вынесите общий множитель за скобки в следующем многочлене:
Решение:
Задание 52. Вынесите общий множитель за скобки в следующем многочлене:
Решение:
Задание 53. Вынесите общий множитель за скобки в следующем многочлене:
Решение:
Задание 54. Вынесите общий множитель за скобки в следующем многочлене:
Решение:

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Одночлены

Определения и примеры

Одночлен — это произведение чисел, переменных и степеней. Например, выражения 5a, 3ab2 и −62aa2b3 являются одночленами.

Приведём ещё примеры одночленов:

примеры одночленов

Одночленом также является любое отдельное число, любая переменная или любая степень. Например, число 9 является одночленом, переменная x является одночленом, степень 52 является одночленом.


Приведение одночлена к стандартному виду

Рассмотрим следующий одночлен:

3a25ab2

Этот одночлен выглядит не очень аккуратно. Чтобы сделать его проще, нужно привести его к так называемому стандартному виду.

Приведение одночлена к стандартному виду заключается в перемножении однотипных сомножителей, входящих в этот одночлен. То есть числа нужно перемножать с числами, переменные с переменными, степени со степенями. В результате этих действий получается упрощённый одночлен, который тождественно равен предыдущему.

Ещё один нюанс заключается в том, что в одночлене степени можно перемножать только в том случае, если они имеют одинаковые основания.

Итак, приведём одночлен 3a25a3b2 к стандартному виду. В этом одночлене содержатся числа 3 и 5. Перемножим их, получим число 15. Записываем его:

15

Далее в одночлене 3a25a3b2 содержатся степени a2 и a3, которые имеют одинаковое основание a. Из тождественных преобразований со степенями известно, что при перемножении степеней с одинаковыми основаниями, основание оставляют без изменений, а показатели складывают. Тогда перемножение степеней a2 и a3 даст в результате a5. Записываем a5 рядом с числом 15

15a5

Далее в одночлене 3a25a3b2 содержится степень b2. Её не с чем перемножать, поэтому она остаётся без изменений. Записываем её как есть к новому одночлену:

15a5b2

Мы привели одночлен 3a25a3b2 к стандартному виду. В результате получили одночлен 15a5b2

3a25a3b2 = 15a5b2

Числовой сомножитель 15 называют коэффициентом одночлена. Приводя одночлен к стандартному виду, коэффициент нужно записывать в первую очередь, и только потом переменные и степени.

Если коэффициент в одночлене отсутствует, то говорят, что коэффициент равен единице. Так, коэффициентом одночлена abc является 1, поскольку abc это произведение единицы и abc

abc = × abc

А коэффициентом одночлена −abc будет −1, поскольку −abc это произведение минус единицы и abc

−abc = −1 × abc

Степенью одночлена называют сумму показателей всех переменных входящих в этот одночлен.

Например, степенью одночлена 15a5b2 является 7. Это потому что переменная a имеет показатель 5, а переменная b имеет показатель 2. Отсюда 5 + 2 = 7. Показатель числового сомножителя 15 считать не нужно, поскольку нас интересуют только показатели переменных.

Ещё пример. Степенью одночлена 7ab2 является 3. Здесь переменная a имеет показатель 1, а переменная b имеет показатель 2. Отсюда 1 + 2 = 3.

Если одночлен не содержит переменных или степеней, а состоит из числа, то говорят, что степень такого одночлена равна нулю. Например, степень одночлена 11 равна нулю.

Не следует путать степень одночлена и степень числа. Степень числа это произведение из нескольких одинаковых множителей, тогда как степень одночлена это сумма показателей всех переменных входящих в этот одночлен. В одночлене 11 нет переменных, поэтому его степень равна нулю.


Пример 1. Привести одночлен 5xx3ya2 к стандартному виду

Перемножим числа 5 и 3, получим 15. Это будет коэффициент одночлена:

15

Далее в одночлене 5xx3ya2 содержатся переменные x и x. Перемножим их, получим x2.

15x2

Далее в одночлене 5xx3ya2 содержится переменная y, которую не с чем перемножать. Записываем её без изменений:

15x2y

Далее в одночлене 5xx3ya2 содержится степень a2, которую тоже не с чем перемножать. Её также оставляем без изменений:

15x2ya2

Получили одночлен 15x2ya2, который приведён к стандартному виду. Буквенные сомножители принято записывать в алфавитном порядке. Тогда одночлен 15x2ya2 примет вид 15a2x2y.

Поэтому, 5xx3ya2 = 15a2x2y.


Пример 2. Привести одночлен 2m3× 0,4mn к стандартному виду

Перемножим числа, переменные и степени по отдельности.

2m3× 0,4mn = 2 × 0,4 × m3 × m × n × n = 0,8m4n2

Числа, переменные и степени при перемножении разрешается заключать в скобки. Делается это для удобства. Так, в данном примере перемножение чисел 2 и 0,4 можно заключить в скобки. Также в скобки можно заключить перемножение m3 × m и n × n

2m3n × 0,4mn = (2 × 0,4) × (m3 × m) × (n × n) = 0,8m4n2

Но желательно выполнять все элементарные действия в уме. Так, решение можно записать значительно короче:

2m3n × 0,4mn = 0,8m4n2

Но чтобы в уме приводить одночлен к стандартному виду, тема умножения целых чисел и умножения степеней должна быть изучена на хорошем уровне.


Сложение и вычитание одночленов

Одночлены можно складывать и вычитать. Чтобы это было возможно, они должны иметь одинаковую буквенную часть. Коэффициенты могут быть любыми. Сложение и вычитание одночленов это по сути приведение подобных слагаемых, которое мы рассматривали при изучении буквенных выражений.

Чтобы сложить (вычесть) одночлены, нужно сложить (вычесть) их коэффициенты, а буквенную часть оставить без изменений.

Пример 1. Сложить одночлены 6a2b и 2a2b

6a2b + 2a2b

Сложим коэффициенты 6 и 2, а буквенную часть 6a2b оставим без изменений

6a2b + 2a2b = 8a2b


Пример 2. Вычесть из одночлена 5a2b3 одночлен 2a2b3

5a2b3 − 2a2b3

Можно заменить вычитание сложением, и сложить коэффициенты одночленов, оставив буквенную часть без изменения:

5a2b3 − 2a2b3 = 5a2b3 + (−2a2b3) = 3a2b3

Либо сразу из коэффициента первого одночлена вычесть коэффициент второго одночлена, а буквенную часть оставить без изменения:

5a2b3 − 2a2b3 = 3a2b3


Умножение одночленов

Одночлены можно перемножать. Чтобы перемножить одночлены, нужно перемножить их числовые и буквенные части.

Пример 1. Перемножить одночлены 5x и 8y

Перемножим числовые и буквенные части по отдельности. Для удобства перемножаемые сомножители будем заключать в скобки:

5x × 8y = (5 × 8) × (x × y) = 40xy


Пример 2. Перемножить одночлены 5x2y3 и 7x3y2c

Перемножим числовые и буквенные части по отдельности. В процессе умножения будем применять правило перемножения степеней с одинаковыми основаниями. Перемножаемые сомножители будем заключать в скобки:

5x2y3 × 7x3y2c = (5 × 7) × (x2x3) × (y3y2) × c = 35x5y5c


Пример 3. Перемножить одночлены −5a2bc и 2a2b4

−5a2bc × 2a2b4 = (−5 × 2) × (a2a2) × (bb4) × c = −10a4b5c


Пример 4. Перемножить одночлены x2y5 и (−6xy2)

x2y5 × (−6xy2) = −6 × (x2x) × (y5y2) = −6x3y7


Пример 5. Найти значение выражения -3 на 5 axy na 5axy пример

-3 на 5 axy na 5axy решение


Деление одночленов

Одночлен можно разделить на другой одночлен. Для этого нужно коэффициент первого одночлена разделить на коэффициент второго одночлена, а буквенную часть первого одночлена разделить на буквенную часть второго одночлена. При этом используется правило деления степеней.

Например, разделим одночлен 8a2b2 на одночлен 4ab. Запишем это деление в виде дроби:

8a2b2 на 4ab

Первый одночлен 8a2b2 будем называть делимым, а второй 4ab — делителем. А одночлен, который получится в результате, назовём частным.

Разделим коэффициент делимого на коэффициент делителя, получим 8 : 4 = 2. В исходном выражении ставим знак равенства и записываем этот коэффициент частного:

8a2b2 на 4ab шаг 2

Теперь делим буквенную часть. В делимом содержится a2, в делителе — просто a. Делим a2 на a, получаем a, поскольку a2 : a = a2 − 1 = a. Записываем в частном a после 2

8a2b2 на 4ab шаг 3

Далее в делимом содержится b2, в делителе — просто b. Делим b2 на b, получаем b, поскольку bb2 − 1 = b. Записываем в частном b после a

8a2b2 на 4ab шаг 4

Значит, при делении одночлена 8a2b2 на одночлен 4ab получается одночлен 2ab.

Сразу можно выполнить проверку. При умножении частного на делитель должно получаться делимое. В нашем случае, если 2ab умножить на 4ab, должно получиться 8a2b2

2ab × 4ab = (2 × 4) × (aa) × (bb) = 8a2b2

Не всегда можно первый одночлен разделить на второй одночлен. Например, если в делителе окажется переменная, которой нет в делимом, то говорят, что деление невозможно.

К примеру, одночлен 6xy2 нельзя разделить на одночлен 3xyz. В делителе 3xyz содержится переменная z, которая не содержится в делимом 6xy2.

Проще говоря, мы не сможем найти частное, которое при умножении на делитель 3xyz дало бы делимое 6xy2, поскольку такое умножение обязательно будет содержать переменную z, которой нет в 6xy2.

Но если в делимом содержится переменная, которая не содержится в делителе, то деление будет возможным. В этом случае переменная, которая отсутствовала в делителе, будет перенесена в частное без изменений.

Например, при делении одночлена 4x2y2z на 2xy, получается 2xyz. Сначала разделили 4 на 2 получили 2, затем x2 разделили на x, получили x, затем y2 разделили на y, получили y. Затем приступили к делению переменной z на такую же переменную в делителе, но обнаружили, что такой переменной в делителе нет. Поэтому перенесли переменную z в частное без изменений:

4x2y2z na 2xy решение

Для проверки умножим частное 2xyz на делитель 2xy. В результате должен получиться одночлен 4x2y2z

2xyz × 2xy = (2 × 2) × (xx) × (yy) × = 4x2y2z

Но в некоторых дробях, если невозможно выполнить деление, бывает возможным выполнить сокращение. Делается это с целью упростить выражение.

Так, в предыдущем примере нельзя было разделить одночлен 6xy2 на одночлен 3xyzНо можно сократить эту дробь на одночлен 3xy. Напомним, что сокращение дроби это деление числителя и знаменателя на одно и то же число (в нашем случае на одночлен 3xy). В результате сокращения дробь становится проще, но её значение не меняется:

6xy2 na 3xyz шаг 1

В числителе и знаменателе мы пришли к делению одночленов, которое можно выполнить:

6xy2 na 3xyz шаг 2

Процесс деления обычно выполняется в уме, записывая над числителем и знаменателем получившийся результат:

6xy2 na 3xyz шаг 3


Пример 2. Разделить одночлен 12a2b3c3 на одночлен 4a2bc

12a2b3c3 na 4a2bc решение


Пример 3. Разделить одночлен x2y3z на одночлен xy2

x2y3z na xy2 решение


Дополнительно упомянем, что деление одночлена на одночлен также невозможно, если одна из степеней, входящая в делимое, имеет показатель меньший, чем показатель той же степени из делителя.

Например, разделить одночлен 2x на одночлен x2 нельзя, поскольку степень x, входящая в делимое, имеет показатель 1, тогда как степень x2, входящая в делитель, имеет показатель 2. Мы не сможем найти частное, которое при перемножении с делителем x2 даст в результате делимое 2x.

Конечно, мы можем выполнить деление x на x2, воспользовавшись свойством степени с целым показателем:

дмм рис 1

и такое частное при перемножении с делителем x2 будет давать в результате делимое 2x

дмм рис 2

Но нас пока интересуют только те частные, которые являются так называемыми целыми выражениями. Целые выражения это те выражения, которые не являются дробями, в знаменателе которых содержится буквенное выражение. А частное 2 на x целым выражением не является. Это дробное выражение, в знаменателе которого содержится буквенное выражение.


Возведение одночлена в степень

Одночлен можно возвести в степень. Для этого используют правило возведения степени в степень.

Пример 1. Возвести одночлен xy во вторую степень.

Чтобы возвести одночлен xy во вторую степень, нужно возвести во вторую степень каждый сомножитель этого одночлена

(xy)2 = x2y2


Пример 2. Возвести одночлен −5a3b во вторую степень.

(−5a3b)2 = (−5)2 × (a3)2 × b2 = 25a6b2


Пример 3. Возвести одночлен −a2bc3 в пятую степень.

В данном примере коэффициентом одночлена является −1. Этот коэффициент тоже нужно возвести в пятую степень:

(−a2bc3)5 = (−1)5 × (a2)5 × b5 × (c3)5 = −1a10b5c15 = −a10b5c15

Когда коэффициент равен −1, то саму единицу не записывают. Записывают только минус и потом остальные сомножители одночлена. В приведенном примере сначала получился одночлен −1a10b5c15, затем он был заменён на тождественно равный ему одночлен a10b5c15.


Пример 4. Представить одночлен 4x2 в виде одночлена, возведённого в квадрат.

В данном примере нужно найти произведение, которое во второй степени будет равно выражению 4x2. Очевидно, что это произведение 2x. Если это произведение возвести во вторую степень (в квадрат), то получится 4x2

(2x)2 = 22x2 = 4x2

Значит, 4x2 = (2x)2. Выражение (2x)2 это и есть одночлен, возведённый в квадрат.


Пример 5. Представить одночлен 121a6 в виде одночлена, возведённого в квадрат.

Попробуем найти произведение, которое во второй степени будет равно выражению 121a6.

Прежде всего заметим, что число 121 получается, если число 11 возвести в квадрат. То есть первый сомножитель будущего произведения мы нашли. А степень a6 получается в том случае, если возвести в квадрат степень a3. Значит вторым сомножителем будущего произведения будет a3.

Таким образом, если произведение 11a3 возвести во вторую степень, то получится  121a6

(11a3)2 = 112 × (a3)2 = 121a6

Значит, 121a6 = (11a3)2. Выражение (11a3)2 это и есть одночлен, возведённый в квадрат.


Разложение одночлена на множители

Поскольку одночлен является произведением чисел, переменных и степеней, то он может быть разложен на множители, из которых состоит.

Пример 1. Разложить одночлен 3a3b2 на множители

Данный одночлен можно разложить на множители 3, a, a, a, b, b

3a3b2 = 3aaabb

Либо степень b2 можно не раскладывать на множители b и b

3a3b2 = 3aaab2

Либо степень b2 разложить на множители b и b, а степень a3 оставить без изменений

3a3b2 = 3a3bb

В каком виде представлять одночлен зависит от решаемой задачи. Главное, чтобы разложение было тождественно равно исходному одночлену.


Пример 2. Разложить одночлен 10a2b3c4 на множители.

Разложим коэффициент 10 на множители 2 и 5, степень a2 разложим на множители aa, степень b3 — на множители bbb, степень c4 — на множители cccc

10a2b3c4  = 2 × 5 × aabbbcccc


Задания для самостоятельного решения

Задание 1. Приведите одночлен −2aba к стандартному виду.
Решение:
−2aba = −2a2b
Задание 2. Приведите одночлен 0,5× 2n к стандартному виду.
Решение:
0,5m × 2n = (0,5 × 2)(mn) = 1mn = mn
Задание 3. Приведите одночлен −8ab(−2,5)b2 к стандартному виду.
Решение:
−8ab(−2,5)b2 = −8 × (−2,5) × a × (b × b2) = 20ab3
Задание 4. Приведите одночлен 0,15pq × 4pq2 к стандартному виду.
Решение:
Задание 5. Приведите одночлен −2x× 0,5xy2 к стандартному виду.
Решение:
Задание 6. Приведите одночлен 2m3× 0,4mn к стандартному виду.
Решение:
Задание 7. Приведите одночлен  к стандартному виду.
Решение:
Задание 8. Приведите одночлен  к стандартному виду.
Решение:
Задание 9. Перемножьте одночлены 2x и 2y
Решение:
2x × 2y = 4xy
Задание 10. Перемножьте одночлены 6x, 5x и y
Решение:
6x × 5x × y = 30x2y
Задание 11. Перемножьте одночлены 2x2, 2x3 и y2
Решение:
2x2 × 2x3 × y2 = (2 × 2) × (x2x3) × y2 = 4x5y2
Задание 12. Перемножьте одночлены −8x и 5x3
Решение:
−8x × 5x3 = (−8 × 5)×(xx3) = −40x4
Задание 13. Перемножьте одночлены x2y5 и (−6xy2)
Решение:
x2y5 × (−6xy2) = −6 × (x2x) × (y5y2) = −6x3y7
Задание 14. Выполните умножение:
Решение:
Задание 15. Выполните умножение:
Решение:
Задание 16. Возведите одночлен x2y2z2 в третью степень
Решение:
(x2y2z2)3 = (x2)3 × (y2)3 × (z2)3 = x6y6z6
Задание 17. Возведите одночлен xy2z3 в пятую степень.
Решение:
(xy2z3)5 = x5 × (y2)5 × (z3)5 = x5y10z15
Задание 18. Возведите одночлен 4x во вторую степень.
Решение:
(4x)2 = 42 × x2 = 16x2
Задание 19. Возведите одночлен 2y3 в третью степень.
Решение:
(2y3)3 = 23 × (y3)3 = 8y9
Задание 20. Возведите одночлен −0,6x3y2 в третью степень.
Решение:
(−0,6x3y2)3 = (−0,6)3 × (x3)3 × (y2)3= −0,216x9y6
Задание 21. Возведите одночлен x2yz3 в пятую степень.
Решение:
(−x2yz3)5 = (−x2)5 × y5 × (z3)5= −x10y5z15
Задание 22. Возведите одночлен −x3y2z во вторую степень.
Решение:
(−x3y2z)2 = (−x3)2 × (y2)2 × z2 = x6y4z2
Задание 23. Представьте одночлен −27x6y9 в виде одночлена, возведённого в куб.
Решение:
−27x6y9 = (−3x2y3)3
Задание 24. Представьте одночлен −a3b6 в виде одночлена, возведённого в куб.
Решение:
a3b6 = (−ab2)3
Задание 25. Выполните деление
Решение:
Задание 26. Выполните деление
Решение:
Задание 27. Выполните деление
Решение:
Задание 28. Выполните деление
Решение:
Задание 29. Выполните деление
Решение:
Задание 30. Выполните деление
Решение:

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Периметр, площадь и объём

Данный материал содержит геометрические фигуры с измерениями. Приведённые измерения являются приблизительными и могут не совпадать с измерениями в реальной жизни.

Периметр геометрической фигуры

Периметр геометрической фигуры — это сумма всех её сторон. Чтобы вычислить периметр, нужно измерить каждую сторону и сложить результаты измерений.

Вычислим периметр следующей фигуры:

прямоуголник 9 4

Это прямоугольник. Детальнее мы поговорим об этой фигуре позже. Сейчас просто вычислим периметр этого прямоугольника. Длина его равна 9 см, а ширина 4 см.

У прямоугольника противоположные стороны равны. Это видно на рисунке. Если длина равна 9 см, а ширина равна 4 см, то противоположные стороны будут равны 9 см и 4 см соответственно:

прямоуголник 9 4 с двух сторон

Найдём периметр. Для этого сложим все стороны. Складывать их можно в любом порядке, поскольку от перестановки мест слагаемых сумма не меняется. Периметр часто обозначается заглавной латинской буквой P (англ. perimeters). Тогда получим:

P = 9 см + 4 см + 9 см + 4 см = 26 см.

Поскольку у прямоугольника противоположные стороны равны, нахождение периметра записывают короче — складывают длину и ширину, и умножают её на 2, что будет означать «повторить длину и ширину два раза»

P = 2 × (9 + 4) = 18 + 8 = 26 см.

Квадрат это тот же прямоугольник, но у которого все стороны равны. Например, найдём периметр квадрата со стороной 5 см. Фразу «со стороной 5 см» нужно понимать как «длина каждой стороны квадрата равна 5 см»

квадрат со стороной 5

Чтобы вычислить периметр, сложим все стороны:

P = 5 см + 5 см + 5 см + 5 см = 20 см

Но поскольку все стороны равны, вычисление периметра можно записать в виде произведения. Сторона квадрата равна 5 см, и таких сторон 4. Тогда эту сторону, равную 5 см нужно повторить 4 раза

P = 5 см × 4 = 20 см


Площадь геометрической фигуры

Площадь геометрической фигуры — это число, которое характеризует размер данной фигуры.

Следует уточнить, что речь в данном случае идёт о площади на плоскости. Плоскостью в геометрии называют любую плоскую поверхность, например: лист бумаги, земельный участок, поверхность стола.

Площадь измеряется в квадратных единицах. Под квадратными единицами подразумевают квадраты, стороны которых равны единице. Например, 1 квадратный сантиметр, 1 квадратный метр или 1 квадратный километр.

Измерить площадь какой-нибудь фигуры означает выяснить сколько квадратных единиц содержится в данной фигуре.

Например, площадь следующего прямоугольника равна трём квадратным сантиметрам:

3 кв см прямоугольник

Это потому что в данном прямоугольнике содержится три квадрата, каждый из которых имеет сторону, равную одному сантиметру:

вхождение квадрата в прямоугольник рис

Справа представлен квадрат со стороной 1 см (он в данном случае является квадратной единицей). Если посмотреть сколько раз этот квадрат входит в прямоугольник, представленный слева, то обнаружим, что он входит в него три раза.

Следующий прямоугольник имеет площадь, равную шести квадратным сантиметрам:

вхождение квадрата в прямоугольник рис 3

Это потому что в данном прямоугольнике содержится шесть квадратов, каждый из которых имеет сторону, равную одному сантиметру:

вхождение квадрата в прямоугольник рис 2

Допустим, потребовалось измерить площадь следующей комнаты:

комната

Определимся в каких квадратах будем измерять площадь. В данном случае площадь удобно измерить в квадратных метрах:

1 кв метр

Итак, наша задача состоит в том, чтобы определить сколько таких квадратов со стороной 1 м содержится в исходной комнате. Заполним этим квадратом всю комнату:

площадь комнаты 12

Видим, что квадратный метр содержится в комнате 12 раз. Значит, площадь комнаты составляет 12 квадратных метров.


Площадь прямоугольника

В предыдущем примере мы вычислили площадь комнаты, последовательно проверив сколько раз в ней содержится квадрат, сторона которого равна одному метру. Площадь составила 12 квадратных метров.

Комната представляла собой прямоугольник. Площадь прямоугольника можно вычислить перемножив его длину и ширину.

Чтобы вычислить площадь прямоугольника, нужно перемножить его длину и ширину.

Вернёмся к предыдущему примеру. Допустим, мы измерили длину комнаты рулеткой и оказалось, что длина составила 4 метра:

площадь комнаты 12 измерение длины

Теперь измерим ширину. Пусть она составила 3 метра:

площадь комнаты 12 измерение ширины

Умножим длину (4 м) на ширину (3 м).

4 × 3 = 12

Как и в прошлый раз получаем двенадцать квадратных метров. Это объясняется тем, что измерив длину, мы тем самым узнаём сколько раз можно уложить в эту длину квадрат со стороной, равной одному метру. Уложим четыре квадрата в эту длину:

площадь комнаты 12 измерение длины 2

Затем мы определяем сколько раз можно повторить эту длину с уложенными квадратами. Это мы узнаём, измерив ширину прямоугольника:

площадь комнаты 12 измерение длины и ширины


Площадь квадрата

Квадрат это тот же прямоугольник, но у которого все стороны равны. Например, на следующем рисунке представлен квадрат со стороной 3 см. Фраза «квадрат со стороной 3 см» означает, что все стороны равны 3 см

квадрат со стороной 3 см

Площадь квадрата вычисляется таким же образом, как и площадь прямоугольника — длину умножают на ширину.

Вычислим площадь квадрата со стороной 3 см. Умножим длину 3 см на ширину 3 см

3 × 3 = 9

В данном случае требовалось узнать сколько квадратов со стороной 1 см содержится в исходном квадрате. В исходном квадрате содержится девять квадратов со стороной 1 см. Действительно, так оно и есть. Квадрат со стороной 1 см, входит в исходный квадрат девять раз:

квадрат со стороной 3 см S

Умножив длину на ширину, мы получили выражение 3 × 3, а это есть произведение двух одинаковых множителей, каждый из которых равен 3. Иными словами выражение 3 × 3 представляет собой вторую степень числа 3. А значит процесс вычисления площади квадрата можно записать в виде степени 32.

Поэтому вторую степень числа называют квадратом числа. При вычислении второй степени числа a, человек тем самым находит площадь квадрата со стороной a. Операцию возведения числа во вторую степень по другому называют возведением в квадрат.


Обозначения

Площадь обозначается заглавной латинской буквой S (англ. Square — квадрат). Тогда площадь квадрата со стороной a см будет вычисляться по следующему правилу

S = a2

где a — длина стороны квадрата. Вторая степень указывает на то, что происходит перемножение двух одинаковых сомножителей, а именно длины и ширины. Ранее было сказано, что у квадрата все стороны равны, а значит равны длина и ширина квадрата, выраженные через букву a.

Если задача состоит в том, чтобы определить сколько квадратов стороной 1 см содержится в исходном квадрате, то в качестве единиц измерения площади нужно указывать см2. Это обозначение заменяет словосочетание «квадратный сантиметр».

Например, вычислим площадь квадрат со стороной 2 см.

квадрат со стороной 2 см

Значит, квадрат со стороной 2 см, имеет площадь, равную четырём квадратным сантиметрам:

квадрат со стороной 2 см S

Если задача состоит в том, чтобы определить сколько квадратов со стороной 1 м содержится в исходном квадрате, то в качестве единиц измерения нужно указывать м2. Это обозначение заменяет словосочетание «квадратный метр».

Вычислим площадь квадрата со стороной 3 метра

квадрат со стороной 3 m

Значит, квадрат со стороной 3 м, имеет площадь равную девяти квадратным метрам:

квадрат со стороной 3 m S

Аналогичные обозначения используются при вычислении площади прямоугольника. Но длина и ширина прямоугольника могут быть разными, поэтому они обозначаются через разные буквы, например a и b. Тогда площадь прямоугольника, длиной a и шириной b вычисляется по следующему правилу:

S = a × b

Как и в случае с квадратом, единицами измерения площади прямоугольника могут быть см2, м2, км2. Эти обозначения заменяют словосочетания «квадратный сантиметр», «квадратный метр», «квадратный километр» соответственно.

Например, вычислим площадь прямоугольника, длиной 6 см и шириной 3 см

пр со сторонами 6 см и 3 см

Значит, прямоугольник длиной 6 см и шириной 3 см имеет площадь, равную восемнадцати квадратным сантиметрам:

пр со сторонами 6 см и 3 см S

В качестве единицы измерения допускается использовать словосочетание «квадратных единиц». Например, запись S = 3 кв.ед означает, что площадь квадрата или прямоугольника равна трём квадратам, каждый из которых имеет единичную сторону (1 см, 1 м или 1 км).


Перевод единиц измерения площади

Единицы измерения площади можно переводить из одной единицы измерения в другую. Рассмотрим несколько примеров:

Пример 1. Выразить 1 квадратный метр в квадратных сантиметрах.

1 квадратный метр это квадрат со стороной 1 м. То есть все четыре стороны имеют длину, равную одному метру.

квадрат со стороной 1 м рисунок 2

Но 1 м = 100 см. Тогда все четыре стороны тоже имеют длину, равную 100 см

квадрат со стороной 1 м рисунок 3

Вычислим новую площадь этого квадрата. Умножим длину 100 см на ширину 100 см или возведём в квадрат число 100

S = 1002 = 10 000 см2

Получается, что на один квадратный метр приходится десять тысяч квадратных сантиметров.

1 м = 10 000 см2

Это позволяет в будущем умножить любое количество квадратных метров на 10 000 и получить площадь, выраженную в квадратных сантиметрах.

Чтобы перевести квадратные метры в квадратные сантиметры, нужно количество квадратных метров умножить на 10 000.

А чтобы перевести квадратные сантиметры в квадратные метры, нужно наоборот количество квадратных сантиметров разделить на 10 000.

Например, переведём 100 000 см2 в квадратные метры. Рассуждать в этом случае можно так: «если 10 000 см2 это один квадратный метр, то сколько раз 100 000 см2 будут содержать по 10 000 см2»

100 000 см2 : 10 000 см2 = 10 м2

Другие единицы измерения можно переводить таким же образом. Например, переведём 2 км2 в квадратные метры.

Один квадратный километр это квадрат со стороной 1 км. То есть все четыре стороны имеют длину, равную одному километру. Но 1 км = 1000 м. Значит, все четыре стороны квадрата также равны 1000 м. Найдём новую площадь квадрата, выраженную в квадратных метрах. Для этого умножим длину 1000 м на ширину 1000 м или возведём в квадрат число 1000

S = 10002 = 1 000 000 м2

Получается, что на один квадратный километр приходится один миллион квадратных метров:

1 км = 1 000 000 м2

Это позволяет в будущем умножить любое количество квадратных километров на 1 000 000 и получить площадь, выраженную в квадратных метрах.

Чтобы перевести квадратные километры в квадратные метры, нужно количество квадратных километров умножить на 1 000 000.

Итак, вернёмся к нашей задаче. Требовалось перевести 2 км2 в квадратные метры. Умножим 2 км2 на 1 000 000

2 км2 × 1 000 000 = 2 000 000 м2

А чтобы перевести квадратные метры в квадратные километры, нужно наоборот количество квадратных метров разделить на 1 000 000.

Например, переведём 3 500 000 м2 в квадратные километры. Рассуждать в этом случае можно так: «если 1 000 000 м2 это один квадратный километр, то сколько раз 3 500 000 м2 будут содержать по 1 000 000 м2»

3 500 000 м2 : 1 000 000 м2 = 3,5 км2


Пример 2. Выразить 7 м2 в квадратных сантиметрах.

Умножим 7 м2 на 10 000

7 м2 = 7 м2 × 10 000 = 70 000 см2


Пример 3. Выразить 5 м2 13 см2 в квадратных сантиметрах.

5 м2 13 см2 = 5 м2 × 10 000 + 13 см2 = 50 013 см2


Пример 4. Выразить 550 000 см2 в квадратных метрах.

Узнаем сколько раз 550 000 см2 содержит по 10 000 см2. Для этого разделим 550 000 см2 на 10 000 см2

550 000 см2 : 10 000 см2 = 55 м2


Пример 5. Выразить 7 км2 в квадратных метрах.

Умножим 7 км2 на 1 000 000

7 км2 × 1 000 000 = 7 000 000 м2


Пример 6. Выразить 8 500 000 м2 в квадратных километрах.

Узнаем сколько раз 8 500 000 м2 содержит по 1 000 000 м2. Для этого разделим 8 500 000 м2 на 1 000 000 м2

8 500 000 м2 × 1 000 000 м2 = 8,5 км2


Единицы измерения площади земельных участков

Площади небольших земельных участков удобно измерять в квадратных метрах.

Площади более крупных земельных участков измеряются в арах и гектарах.

Ар (сокращённо: a) — это площадь равная ста квадратным метрам (100 м2). В виду частого распространения такой площади (100 м2) она стала использоваться, как отдельная единица измерения.

К примеру, если сказано, что площадь какого-нибудь поля составляет 3 а, то нужно понимать, что это три квадрата площадью 100 м2 каждый, то есть:

3 а = 100 м2 × 3 = 300 м2

В народе ар часто называют соткой, поскольку ар равен квадрату, площадью 100 м2. Примеры:

1 сотка = 100 м2

2 сотки = 200 м2

10 соток = 1000 м2

Гектар (сокращенно: га) — это площадь, равная 10 000 м2. К примеру, если сказано, что площадь какого-нибудь леса составляет 20 гектаров, то нужно понимать, что это двадцать квадратов площадью 10 000 м2 каждый, то есть:

20 га = 10 000 м2 × 20 = 200 000 м2


Прямоугольный параллелепипед и куб

Прямоугольный параллелепипед — это геометрическая фигура, состоящая из граней, ребер и вершин. На рисунке показан прямоугольный параллелепипед:

пр параллелепипед

Желтым цветом показаны грани параллелепипеда, чёрным цветом — рёбра, красным — вершины.

Прямоугольный параллелепипед обладает длиной, шириной и высотой. На рисунке показано где длина, ширина и высота:

пр параллелепипед д ш в

Параллелепипед, у которого длина, ширина и высота равны между собой, называется кубом. На рисунке показан куб:

куб


Объём геометрической фигуры

Объём геометрической фигуры — это число, которое характеризует вместимость данной фигуры.

Объём измеряется в кубических единицах. Под кубическими единицами подразумевают кубы длиной 1, шириной 1 и высотой 1. Например, 1 кубический сантиметр или 1 кубический метр.

Измерить объём какой-нибудь фигуры означает выяснить сколько  кубических единиц вмещается в данную фигуру.

Например, объём следующего прямоугольного параллелепипеда равен двенадцати кубическим сантиметрам:

v пр 12

Это потому что в данный параллелепипед вмещается двенадцать кубов длиной 1 см, шириной 1 см и высотой 1 см:

v пр обоснование

Объём обозначается заглавной латинской буквой V. Одна из единиц измерения объема это кубический сантиметр (см3). Тогда объём V рассмотренного нами параллелепипеда равен 12 см3

V = 12 см3

Объём любого параллелепипеда вычисляют следующим образом: перемножают его длину, ширину и высоту .

Объём прямоугольного параллелепипеда равен произведению его длины, ширины и высоты.

V = abc

где, a — длина, b — ширина, c — высота

Так, в предыдущем примере мы визуально определили, что объём параллелепипеда равен 12 см3. Но можно измерить длину, ширину и высоту данного параллелепипеда и перемножить результаты измерений. Мы получим тот же результат

v пр 12 измерения

Объём куба вычисляется таким же образом, как и объём прямоугольного параллелепипеда — перемножают длину, ширину и высоту.

Например, вычислим объём куба, длина которого 3 см. У куба длина, ширина и высота равны между собой. Если длина равна 3 см, то равны этим же трём сантиметрам ширина и высота куба:

v куба стороной 3 см

Перемножаем длину, ширину, высоту и получаем объём, равный двадцати семи кубическим сантиметрам:

V = 3 × 3 × 3 = 27 см³

Действительно, в исходный куб вмещается 27 кубиков длиной 1 см

v куба обоснование

При вычислении объёма данного куба мы перемножили длину, ширину и высоту. Получилось произведение 3 × 3 × 3. Это есть произведение трёх сомножителей, каждый из которых равен 3. Иными словами, произведение 3 × 3 × 3 является третьей степенью числа 3 и может быть записано в виде 33.

V = 33 = 27 см3

Поэтому третью степень числа называют кубом числа. При вычислении третьей степени числа a, человек тем самым находит объём куба, длиной a. Операцию возведения числа в третью степень по другому называют возведением в куб.

Таким образом, объём куба вычисляется по следующему правилу:

V = a3

Где a — длина куба.


Кубический дециметр. Кубический метр

Не все объекты нашего мира удобно измерять в кубических сантиметрах. Например, объём комнаты или дома удобнее измерять в кубических метрах (м3). А объём бака, аквариума или холодильника удобнее измерять в кубических дециметрах (дм3).

Другое название одного кубического дециметра – один литр.

1 дм3 = 1 литр


Перевод единиц измерения объёма

Единицы измерения объёма можно переводить из одной единицы измерения в другую. Рассмотрим несколько примеров:

Пример 1. Выразить 1 кубический метр в кубических сантиметрах.

Один кубический метр это куб со стороной 1 м. Длина, ширина и высота этого куба равны одному метру.

куб со стороной 1 м

Но 1 м = 100 см. Значит, длина, ширина и высота тоже равны 100 см

куб со стороной 1 м рисунок 2

Вычислим новый объём куба, выраженный в кубических сантиметрах. Для этого перемножим его длину, ширину и высоту. Либо возведём число 100 в куб:

V = 1003 = 1 000 000 см3

Получается, что на один кубический метр приходится один миллион кубических сантиметров:

1 м = 1 000 000 см3

Это позволяет в будущем умножить любое количество кубических метров на 1 000 000 и получить объём, выраженный в кубических сантиметрах.

Чтобы перевести кубические метры в кубические сантиметры, нужно количество кубических метров умножить на 1 000 000.

А чтобы перевести кубические сантиметры в кубические метры, нужно наоборот количество кубических сантиметров разделить на 1 000 000.

Например, переведём 300 000 000 см3 в кубические метры. Рассуждать в этом случае можно так: «если 1 000 000 см3 это один кубический метр, то сколько раз 300 000 000 см3 будут содержать по 1 000 000 см3»

300 000 000 см3 : 1 000 000 см3 = 300 м3


Пример 2. Выразить 3 м3 в кубических сантиметрах.

Умножим 3 м3 на 1 000 000

3 м3 × 1 000 000 = 3 000 000 см3


Пример 3. Выразить 60 000 000 см3 в кубических метрах.

Узнаем сколько раз 60 000 000 см3 содержит по 1 000 000 см3. Для этого разделим 60 000 000 см3 на 1 000 000 см3

60 000 000 см3 : 1 000 000 см3 = 60 м3


Вместимость бака, банки или канистры измеряют в литрах. Литр это тоже единица измерения объема. Один литр равен одному кубическому дециметру.

1 литр = 1 дм3

Например, если вместимость банки составляет 1 литр, это значит что объём этой банки составляет 1 дм3. При решении некоторых задач может быть полезным умение переводить литры в кубические дециметры и наоборот. Рассмотрим несколько примеров.

Пример 1. Перевести 5 литров в кубические дециметры.

Чтобы перевести 5 литров в кубические дециметры, достаточно умножить 5 на 1

5 л × 1 = 5 дм3


Пример 2. Перевести 6000 литров в кубические метры.

Шесть тысяч литров это шесть тысяч кубических дециметров:

6000 л × 1 = 6000 дм3

Теперь переведём эти 6000 дм3 в кубические метры.

Длина, ширина и высота одного кубического метра равны 10 дм

куб со стороной 1 м рисунок 3

Если вычислить объём этого куба в дециметрах, то получим 1000 дм3

V = 103= 1000 дм3

Получается, что одна тысяча кубических дециметров соответствует одному кубическому метру. А чтобы определить сколько кубических метров соответствуют шести тысячамл кубических дециметров, нужно узнать сколько раз 6 000 дм3 содержит по 1 000 дм3

6 000 дм3 : 1 000 дм3 = 6 м3

Значит, 6000 л = 6 м3.


Таблица квадратов

В жизни часто приходиться находить площади различных квадратов. Для этого каждый раз требуется возводить исходное число во вторую степень.

Квадраты первых 99 натуральных чисел уже вычислены и занесены в специальную таблицу, называемую таблицей квадратов.

таблица квадратов рисунок 1

Первая строка данной таблицы (цифры от 0 до 9) это единицы исходного числа, а первый столбец (цифры от 1 до 9) это десятки исходного числа.

Например, найдём квадрат числа 24 по данной таблице. Число 24 состоит из цифр 2 и 4. Точнее, число 24 состоит из двух десятков и четырёх единиц.

Итак, выбираем цифру 2 в первом столбце таблицы (столбце десятков), а цифру 4 выбираем в первой строке (строке единиц). Затем, двигаясь вправо от цифры 2 и вниз от цифры 4, найдём точку пересечения. В результате окажемся на позиции, где располагается число 576. Значит, квадрат числа 24 есть число 576

таблица квадратов рисунок 2

242 = 576


Таблица кубов

Как и в ситуации с квадратами, кубы первых 99 натуральных чисел уже вычислены и занесены в таблицу, называемую таблицей кубов.

таблица кубов рисунок 1

Куб числа по таблице определяется таким же образом, как и квадрат числа. Например, найдём куб числа 35. Это число состоит из цифр 3 и 5. Выбираем цифру 3 в первом столбце таблицы (столбце десятков), а цифру 5 выбираем в первой строке (строке единиц). Двигаясь вправо от цифры 3 и вниз от цифры 5, найдём точку пересечения. В результате окажемся на позиции, где располагается число 42875. Значит, куб числа 35 есть число 42875.

таблица кубов рисунок 2

353 = 42875


Задания для самостоятельного решения

Задача 1. Длина прямоугольника составляет 6 см, а ширина 2 см. Найдите периметр.

Решение

P = 2(a + b)

a = 6, b = 2
P = 2(6 + 2) = 12 + 4 = 16 см

Ответ: периметр прямоугольника равен 16 см.

Задача 2. Длина прямоугольника составляет 6 см, а ширина 2 см. Найдите площадь.

Решение

S = ab
a = 6, b = 2
S = 6 × 2 = 12 см2

Ответ: площадь равна 12 см2.

Задача 3. Площадь прямоугольника составляет 12 см2. Длина составляет 6 см. Найдите ширину прямоугольника.

Решение

S = ab
S = 12, a = 6, b = x
12 = 6 × x
x = 2

Ответ: ширина прямоугольника составляет 2 см.

Задача 4. Вычислите площадь квадрата со стороной 8 см

Решение

S = a2
a = 8
S = 82 = 64 см2
Ответ: площадь квадрата со стороной 8 см равна 64 см2

Задача 5. Вычислите объем прямоугольного параллелепипеда, длина которого 6 см, ширина 4 см, высота 3 см.

Решение

V = abc
a = 6, b = 4, c = 3
V = 6 × 4 × 3 = 72 см3.

Ответ: объем прямоугольного параллелепипеда, длина которого 6 см, ширина 4 см, высота 3 см равен 72 см3

Задача 6. Объем прямоугольного параллелепипеда составляет 200 см3. Найдите высоту параллелепипеда, если его длина равна 10 см, а ширина 5 см

Решение

V = abc
V = 200, a = 10, b = 5, c = x
200 = 10 × 5 × x
200 = 50x
x = 4

Ответ: высота прямоугольного параллелепипеда равна 4 см.

Задача 7. Площади земельного участка, засеянные пшеницей и льном, пропорциональны числам 4 и 5. На какой площади засеяна пшеница, если под льном засеяно 15 га

Решение

Число 4 отражает площадь, засеянную пшеницей. А число 5 отражает площадь, засеянную льном.
Сказано что площади, засеянные пшеницей и льном пропорциональны этим числам.

Проще говоря, во сколько раз изменяются числа 4 или 5, во сколько же раз изменится и площадь, которая засеяна пшеницей или льном. Льном засеяно 15 га. То есть число 5, которое отражает площадь, засеянную льном, изменилось в 3 раза.

Тогда число 4, которое отражает площадь засеянную пшеницей, нужно увеличить в три раза

4 × 3 = 12 га

Ответ: пшеницей засеяно 12 га.

Задача 8. Длина зернохранилища 42 м, ширина составляет длины, а высота – 0,1 длины. Определите сколько тонн зерна вмещает зернохранилище, если 1 м3 его весит 740 кг.

Решение

a — длина
b — ширина
c — высота

a = 42 м
b = м
c = 42 × 0,1 = 4,2 м

Определим объем зернохранилища:

V = abc = 42 × 30 × 4,2 = 5292 м3

Определите сколько тонн зерна вмещает зернохранилище:

5292 × 740 = 3916080 кг

Переведём килограммы в тонны:

Ответ: зернохранилище вмещает 3916,08 тонн зерна.

Задача 9. 12. Бассейн имеет форму прямоугольного параллелепипеда, длина которого равна 5,8 м, а ширина – 3,5 м. Две трубы наполняют его водой в течение 13 ч 32 мин., причём через одну из них вливается 25 л/мин, а через вторую – 0,75 этого количества. Определите высоту (глубину) бассейна.

Решение

Определим сколько литров в минуту вливается через вторую трубу:

25 л/мин × 0,75 = 18,75 л/мин

Определим сколько литров в минуту вливается в бассейн через обе трубы:

25 л/мин + 18,75 л/мин = 43,75 л/мин

Определим сколько литров воды будет залито в бассейн за 13 ч 32 мин

43,75 × 13 ч 32 мин = 43,75 × 812 мин = 35 525 л

1 л = 1 дм3

35 525 л = 35 525 дм3

Переведём кубические дециметры в кубические метры. Это позволит вычислит объем бассейна:

35 525 дм3 : 1000 дм3 = 35,525 м3

Зная объём бассейна можно вычислить высоту бассейна. Подставим в буквенное уравнение V=abc имеющиеся у нас значения. Тогда получим:

V = 35,525
a = 5.8
b = 3.5
c = x

35,525 = 5,8 × 3,5 × x
35,525 = 20,3 × x
x = 1,75 м

с = 1,75

Ответ: высота (глубина) бассейна составляет 1,75 м.


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Степень с целым показателем

Степень с целым показателем — это степень, показателем которой является любое целое число.

В прошлом уроке мы изучили степень с натуральным показателем. Этот вид степени тоже является степенью с целым показателем, поскольку натуральные числа относятся к целым числам.

Также, мы рассмотрели степень, показателем которой является 0. Этот вид степени тоже является степенью с целым показателем, поскольку 0 относится к целым числам.

Рассмотрим ещё один вид степени с целым показателем, а именно показателем которой является целое отрицательное число. Выглядят эти степени так:

2−2, 10−7, a−8

В дальнейшем любую степень с натуральным, нулевым или целым отрицательным показателем, мы будем называть степенью с целым показателем.

Правило вычисления

Рассмотрим следующую последовательность степеней:

20, 21, 22, 23, 24, 25

Первая степень в этой последовательности это степень 20. Предыдущая степень с целым показателем будет уже с отрицательным показателем и выглядеть как 2−1.

2−1, 20, 21, 22, 23, 24, 25

А предыдущая степень с целым показателем, которая располагается до 2−1, будет степень 2−2

2−2, 2−1, 20, 21, 22, 23, 24, 25

Продолжим эту последовательность в сторону степеней с целыми отрицательными показателями:

2−5, 2−4, 2−3, 2−2, 2−1, 20, 21, 22, 23, 24, 25

Теперь попробуем вычислить эти степени. Степени с натуральными показателями и степень, показателем которой является 0, вычисляются легко:

степень с ц.п. рисунок 1

А как вычислить степени с отрицательными показателями? Для начала немного отойдём от темы и затронем несколько закономерностей.

В отрицательную степень число возводится немного иначе. Следует понимать, что если при возведении в положительную степень число увеличивается, то при возведении в отрицательную степень это число наоборот уменьшается.

Если мы возьмём какое-нибудь число n, и начнём последовательно увеличивать его степень, то получим последовательность чисел, в которой каждое число меньше следующего в n раз.

Например, возьмём число 2. Начиная с нуля будем последовательно увеличивать его показатель:

20, 21, 22, 23, 24, 25

Вычислим эти степени:

1, 2, 4, 8, 16, 32

Получили последовательность чисел, в которой каждое число меньше следующего числа в 2 раза. Тогда логично предположить, что число, располагающееся до единицы, будет в два раза меньше единицы. Его можно получить, если 1 разделить на 2

1 на 2 1 2 4 8 16 32

Вернёмся к нашей исходной последовательности, где мы вычисляли степени. Получается, что степень 2−1 мы вычислили. Она равна рациональному числу одна вторая

степень с ц.п. рисунок 2

Предыдущее за числом одна вторая должно быть в два раза меньше, чем одна вторая. Чтобы его получить разделим одна вторая на 2

1 на 2 на 2 решение

Получили одна четвертая. Это значение степени 2−2

степень с ц.п. рисунок 3

Продолжая деление на 2 можно получить значения остальных степеней с целыми отрицательными показателями:

степень с ц.п. рисунок 4

Заметим, что в данной последовательности значения степеней с отрицательными показателями являются обратными числами к значениям степеней с натуральными показателями:

степень с ц.п. рисунок 5

К примеру, значение степени в 22 есть число 4. А значение степени 2−2 есть число одна четвертая. Числа 4 и одна четвертая являются обратными друг другу. А степени 22 и 2−2 отличаются только тем, что у них противоположные показатели.

Можно сделать вывод, что для вычисления степени с отрицательным показателем, нужно записать дробь, в числителе которой единица, а в знаменателе та же самая степень, но с противоположным показателем. Покажем это на примере степени 2−2

2 v - 2 ravno 1 na 2 v 2

Вычислим степень, находящуюся в знаменателе:

2 v - 2 ravno 1 na 2 v 2 шаг 2

Таким образом, чтобы вычислить степень вида an можно воспользоваться следующим правилом:

возведение в степень отр числа формула

Данное правило можно доказать, используя правило деления степеней с одинаковыми основаниями. Допустим, потребовалось вычислить выражение 2: 25. Запишем это деление в виде дроби

2 в 2 на 2 в 3 ratio

Воспользуемся правилом деления степеней с одинаковыми основаниями:

2 в 2 на 2 в 3 ratio 2

Получили степень с отрицательным показателем 2−2. Ранее мы выяснили, что её значение равно одна четвертая. Чтобы убедиться в этом, попробуем вычислить выражение 2 в 2 на 2 в 3 ratio  как обычно, не используя правило деления степеней:

2 в 3 на 2 в 5 решение 1

Получили рациональное число 8 на 32. Сократим его на 8. Тогда получим одна четвертая

2 в 3 на 2 в 5 решение


Пример 2. Найти значение выражения 9−2

Воспользуемся правилом вычисления степени с целым отрицательным показателем:

9 v - 2 решение


Пример 3. Найти значение выражения 3−3

3 в -3 решение

Следует упомянуть, что правило а в -1 формула 130px работает только тогда, когда a ≠ 0.

Действительно, если a будет равным нулю, то в знаменателе получим 0, а на нуль делить нельзя.


Пример 4. Найти значение выражения 1 na 2 v -2 пример

1 na 2 v -2


Пример 5. Найти значение выражения -2 на 3 в -3

-2 на 3 в -3 решение

При возведении обыкновенных дробей в отрицательную степень, можно пользоваться формулой a na b v n formula. Решим предыдущие два примера с помощью этой формулы:

a na b v n formula пример

Желательно уметь возводить обыкновенную дробь в отрицательную степень как с помощью формулы, так и без неё.


Тождественные преобразования

Все тождественные преобразования, которые мы рассматривали при изучении степени с натуральным показателем, сохраняются и для степеней с целыми отрицательными показателями.

Например, чтобы представить выражение 2−1 × 2−3 в виде степени, можно воспользоваться основным свойством степени:

2−1 × 2−3 = 2−1 + (−3) = 2−4


Пример 2. Найти значение выражения 5−15 × 516

Воспользуемся основным свойством степени:

5−15 × 516 = 5−15 + 16 = 5= 5

или:

5-16 на 5 в 16 решение 2

Видим, что первый вариант решения намного проще и удобнее.


Пример 3. Найти значение выражения (10−4)−1

Воспользуемся правилом возведения степени в степень:

(10−4)−1 = 10−4 × (−1) = 104 = 10000


Пример 4. Найти значение выражения 10 в -6 на 5 в -6

Представим число основание 10 в виде произведения 2 × 5. Тогда числитель примет вид (2 × 5)−6

10 в -6 на 5 в -6 шаг 1

В числителе применим правило возведения в степень произведения:

10 в -6 на 5 в -6 шаг 2

Сократим получившуюся дробь на 5−6

10 в -6 на 5 в -6 шаг 3

Вычислим степень 2−6

10 в -6 на 5 в -6 шаг 4


Поднятие степени из знаменателя в числитель и наоборот

Если знаменатель дробного выражения содержит степень, то данную степень можно поднять в числитель, изменив знак показателя этой степени на противоположный. Значение выражения при этом не меняется. Данное преобразование иногда используется при упрощении выражений.

Рассмотрим следующее равенство:

2 в 2 на 2 в 2 равно 1

Данное равенство является верным, поскольку выражение 2 в 2 на 2 в 2 равно 20, а любое число в нулевой есть единица.

Попробуем поднять степень 22 из знаменателя в числитель, изменив знак показателя этой степени на противоположный. При этом, поднятую степень и ту степень, которая располагалась в числителе, соединим знаком умножения:

1 на 2 в 2 рисунок 1

Получили выражение 22 × 2−2. Чтобы его вычислить, воспользуемся основным свойством степени:

22 × 2−2 = 22 + (−2) = 20 = 1

Получился тот же результат, что и раньше. Значит значение выражения не изменилось. Как это работает?

Если в равенстве а в -1 формула 130px поменять местами левую и правую часть, то получим равенство а в -1 формула 130px 2. Это позволяет заменять в выражениях дробь вида 1 на a v n на тождественно равное ей выражение a−n.

Теперь представим выражение 2 в 2 на 2 в 2 в виде произведения 2 в 2 на 1 на 2 в 2. То есть заменим деление умножением. Напомним, что при замене деления умножением, делимое умножают на число, обратное делителю. А обратное делителю число в данном случае это дробь 

1 на 2 в 2 шаг 2

Теперь воспользуемся правилом а в -1 формула 130px 2. В произведении 2 в 2 на 1 на 2 в 2 заменим дробь  на тождественно равное ей выражение 2−2

1 на 2 в 2 шаг 3

Далее, как и раньше применяем основное свойство степени:

1 на 2 в 2 шаг 4

Получился тот же результат 1.

Таким же образом можно опустить степень из числителя в знаменатель, изменив знак показателя этой степени на противоположный.

Рассмотрим выражение 2 в -2 на 2 в 2. Чтобы найти его значение, воспользуемся правилом деления степеней с одинаковыми основаниями. В результате получим 1 на 16

2 в -2 на 2 в 2 решение

Теперь попробуем решить этот пример, опустив степень 2−2 из числителя в знаменатель, изменив знак показателя этой степени на противоположный. При этом, опущенную степень 2−2 и ту степень, которая располагалась в знаменателе, соединим знаком умножения. А в числителе останется единица:

2 в -2 на 2 в 2 рисунок 1

Дальнейшее вычисление не составит особого труда:

2 в -2 на 2 в 2 решение 2

Как и в прошлом примере выражение 2 в -2 на 2 в 2 представимо в виде произведения 2 в -2 на 2 в 2 шаг 2

2 в -2 на 2 в 2 шаг 1

Этим и объясняется появление единицы в числителе, после того как степень 2−2 была опущена в знаменатель.

Переносимых в знаменатель либо в числитель степеней может быть несколько. Например, знаменатель дроби 1 на 3 в 2 на а в 3 на б на 4 содержит степени 32, a3b4. Перенесём эти степени в числитель, изменив знаки их показателей на противоположные. В результате получим выражение 32a3b4.

Пример 2. Поднять степени из знаменателя дроби 1 на x2y пример в числитель

1 на x2y


Пример 3. Поднять степени из знаменателя дроби 2 на x3 b4 пример в числитель

2 на x3 b4 решение


Пример 4. Поднять степень из знаменателя дроби 3a na b пример в числитель

3a na b решение


Пример 5. Опустить степень из числителя дроби a -5 na x na 2 в знаменатель

a -5 na x na 2 решение


Пример 6. Степень из числителя дроби a-5 na x-2 пример опустить в знаменатель, а степень из знаменателя поднять в числитель

a-5 na x-2 решение

Представлять дробь a-5 na x-2 пример в виде произведения a-5 na x-2 шаг 2 вовсе не обязательно. Если пропустить эту запись, то данный пример можно решить короче:

a-5 na x-2 решение 2


Пример 7. В дроби 3ax na 5bcy пример перенести из знаменателя в числитель только те степени, которые имеют отрицательные показатели:

3ax na 5bcy решение


Пример 8. Представить произведение 3x−5 в виде дроби, не содержащей степени с отрицательным показателем.

Перепишем произведение 3x−5 с помощью знака умножения:

3 × x−5

Сомножитель 3 оставим без изменений, а сомножитель x−5 заменим на тождественно равную ему дробь 1 на x v 5

3 na x-5 решение шаг 1

Теперь согласно правилу умножения целого числа на дробь, умножим множитель 3 на числитель дроби 1 на x v 5. В результате образуется дробь 3 на x-5

3 na x-5 решение


Пример 9. Представить произведение 3(x + y)−4 в виде дроби, не содержащей степени с отрицательным показателем.

Выражение состоит из сомножителей 3 и (x + y)−4. Сомножитель 3 оставим без изменений, а сомножитель (x + y)−4 заменим на тождественно равную ему дробь 3 на x-5 шаг 1

3 на x-5 шаг 2

Теперь умножим множитель 3 на числитель дроби 3 на x-5 шаг 1. В результате образуется дробь 3 на x-5 шаг 3

3 на x-5 решение


Пример 10. Представить дробь 3 на x v 2 в виде произведения.

Чтобы решить этот пример, достаточно поднять степень x2 в числитель, изменив знак показателя этой степени на противоположный:

3 на x v 2 шаг 1

Как и в прошлых примерах дробь 3 на x v 2 можно было представить в виде произведения 3 на x v 2 шаг 2. Затем воспользовавшись правилом а в -1 формула 130px 2, заменить сомножитель 1 на x v 2 на тождественно равный ему сомножитель x−2.

3 на x v 2 решение


Пример 11. Представить дробь x na y v 2 na x v 4 na y na 4 пример в виде произведения.

x na y v 2 na x v 4 na y na 4 решение


Пример 12. Найти значение выражения 5 в 2 на 10 -2 на 2 -3

Поднимем степень 2−3 из знаменателя в числитель, а степень 10−2 из числителя опустим в знаменатель:

5 в 2 на 10 -2 на 2 -3 шаг 1

Вычислим значения степеней, содержащихся в числителе и в знаменателе:

5 в 2 на 10 -2 на 2 -3 шаг 3

Сократим полученную дробь на 25. Тогда останется дробь Восемь четвертых, значение которой равно 2.

5 в 2 на 10 -2 на 2 -3 решение

А если бы мы не подняли степень 2−3 в числитель, и степень 10−2 не опустили в знаменатель, а стали вычислять каждую степень по отдельности, то получили бы не очень компактное решение:

5 в 2 на 10 -2 на 2 -3 решение 2


Возведение числа 10 в целую отрицательную степень

Число 10 в отрицательную степень возводится таким же образом, как и другие числа. Например:

10 в -1 в -2 в -3 примеры

Замечаем, что количество нулей, которые получаются в ответе равны модулю показателя исходной степени. Например, в степени 10−2 модуль показателя равен 2. Это значит, что в ответе будет содержаться два нуля. Так оно и есть:

10 в -2

Чтобы возвести число 10 в отрицательную степень, нужно перед единицей записать количество нулей, равное модулю показателя исходной степени.

При этом после первого нуля, нужно поставить запятую. Примеры:

10 в -4 -5 -6


Представление чисел 0,1, 0,01, 0,001 в виде степени с основанием 10

Чтобы представить числа 0,1, 0,01, 0,001 в виде степени с основанием 10, нужно записать основание 10, и в качестве показателя указать отрицательный показатель, модуль которого равен количеству нулей исходного числа.

Представим число 0,1 в виде степени с основанием 10. Видим, что в числе 0,1 один нуль. Значит, число 0,1 в виде степени с основанием 10 будет представлено как 101. Показатель степени 101 равен −1. Модуль этого показателя равен количеству нулей в числе 0,1

0,1 = 101

Число 0,1 это результат деления 1 на 10, а эта дробь есть значение степени 101.


Пример 2. Представить число 0,01 в виде степени с основанием 10.

В числе 0,01 два нуля. Значит, число 0,01 в виде степени с основанием 10 будет представлено как 10−2. Показатель степени 10−2 равен −2. Модуль этого показателя равен количеству нулей в числе 0,01

0,01 = 10−2

Число 0,01 это результат деления 1 на 100, то есть 1 на 10 в 2, а эта дробь есть значение степени 10−2.


Пример 3. Представить число 0,001 в виде степени с основанием 10.

0,001 = 10−3


Пример 4. Представить число 0,0001 в виде степени с основанием 10.

0,0001 = 10−4


Пример 5. Представить число 0,00001 в виде степени с основанием 10.

0,00001 = 10−5


Стандартный вид числа

Запишем число 2 000 000 в виде произведения числа 2 и 1 000 000

2 × 1 000 000

Сомножитель 1 000 000 можно заменить на степень 106

2 × 106

Такой вид записи называют стандартным видом числа. Стандартный вид числа позволяет записывать в компактном виде как большие, так и маленькие числа.

Например, маленькое число 0,005 можно записать в виде произведения числа 5 и десятичной дроби 0,001.

5 × 0,001

Десятичную дробь 0,001 можно заменить на степень с 10−3

5 × 10−3

Значит, число 0,005 в стандартном виде будет выглядеть как 5 × 10−3

0,005 = 5 × 10−3

По стандартному виду числа можно вычислить изначальное число. Так, при записи числа 2 000 000 в стандартном виде, мы получили произведение 2 × 106. Если вычислить это произведение, то снова получим 2 000 000

2 × 106 = 2 × 1 000 000 = 2 000 000

А при записи числа 0,005 в стандартном виде мы получили произведение 5 × 10−3. Если вычислить это произведение, то получим 0,005

5 на 10 в - 3 решение

То есть записывая число в стандартном виде нужно записывать его так, чтобы сохранить его изначальное значение.

Стандартным видом числа называют запись вида × 10n, где 1 ≤ < 10 и n — целое число.

Число а это исходное число, которое надо записать в стандартном виде. Оно должно удовлетворять неравенству 1 ≤ < 10. Чаще всего исходное число надо приводить к виду, при котором неравенство 1 ≤ < 10 становится верным.

Например, представим число 12 в стандартном виде. Для начала проверим становится ли верным неравенство 1 ≤ < 10 при подстановке числа 12 вместо а

1 ≤ 12 < 10

Неравенство верным не становится. Чтобы сделать неравенство верным, приведём число 12 к виду, при котором оно удовлетворяло бы данному неравенству. Для этого передвинем в числе 12 запятую влево на одну цифру:

1,2

Число 12 обратилось в число 1,2. Это число будет удовлетворять неравенству 1 ≤ < 10

1 ≤ 1,2 < 10

Теперь наша задача состоит в том, чтобы записать произведение × 10n. С числом а мы разобрались — этим числом у нас будет 1,2. А как подобрать степень с основанием 10?

После переноса запятой на одну цифру влево, число 12 утратило своё изначальное значение. Запятая на одну цифру влево двигается тогда, когда число делят на 10. А чтобы восстановить изначальное значение числа запятую нужно передвинуть обратно в правую сторону на одну цифру, то есть умножить число 1,2 на 10.

Значит, чтобы записать число 12 в стандартном виде, нужно представить его в виде произведения 1,2 × 10¹

12 = 1,2 × 10¹


Пример 2. Записать число 0,5 в стандартном виде.

Число 0,5 не удовлетворяет неравенству 1 ≤ a< 10, поэтому передвинем запятую в этом числе на одну цифру вправо. В результате получим число 5, которое удовлетворяет неравенству 1 ≤ a< 10.

Теперь запишем произведение вида × 10n. Число a в данном случае это 5. А степень с основанием 10 надо выбрать так, чтобы произведение × 10n стало равным числу 0,5. Число 0,5 получится если умножить число 5 на множитель 0,1, который представим в виде степени 10−1. В результате получим следующую запись:

0,5 = 5 × 10−1


Пример 3. Записать число 652 000 в стандартном виде.

Число 652 000 не удовлетворяет неравенству 1 ≤ a< 10, поэтому передвинем запятую в этом числе на пять цифр влево. В результате получим число 6,52000 которое удовлетворяет неравенству 1 ≤ a< 10.

Теперь запишем произведение вида × 10n. Число a в данном случае это 6,52000. А степень с основанием 10 надо выбрать так, чтобы произведение × 10n стало равным числу 652 000. Число 652 000 получится если число 6,52000 умножить на 100 000, а это есть степень 105. В результате получим следующую запись:

652 000 = 6,52000 × 105

Нули в конце десятичной дроби 6,52000 можно отбросить. Тогда получим более компактную запись:

652 000 = 6,52 × 105


Пример 5. Записать число 1 024 000 в стандартном виде.

Число 1 024 000 не удовлетворяет неравенству 1 ≤ a< 10, поэтому передвинем запятую в этом числе на шесть цифр влево. В результате получим число 1,024000 которое удовлетворяет неравенству 1 ≤ a< 10.

Теперь запишем произведение вида × 10n. Число a в данном случае это 1,024000 . А степень с основанием 10 надо выбрать так, чтобы произведение × 10n было равно изначальному числу 1 024 000. Число 1 024 000 получится если число 1,024000 умножить на 1 000 000, а это есть степень 106. В результате получим следующую запись:

1 024 000 = 1,024000 × 106

Нули в конце десятичной дроби 1,024000 можно отбросить:

1 024 000 = 1,024 × 106

Отбрасывать можно только те нули, которые располагаются в конце, и после которых нет других цифр, бóльших нуля. В приведённом примере были отброшены только три нуля, а нуль располагавшийся между запятой и цифрой 2 был сохранен, несмотря на то, что он тоже располагался после запятой.


Пример 6. Записать число 0,000325 в стандартном виде.

Передвинем в данном числе запятую так, чтобы оно удовлетворяло неравенству 1 ≤ a< 10. В результате получим число 3,25

Теперь запишем произведение вида × 10n. Число a в данном случае это 3,25. А степень с основанием 10 надо выбрать так, чтобы произведение × 10n было равно изначальному числу 0,000325. Число 0,000325 получится если число 3,25 умножить на множитель 0,0001 который представим в виде степени 10−4. В результате получим следующую запись:

0,000325 = 3,25 × 10−4


Задания для самостоятельного решения

Задание 1. Вычислите степень 3−2
Решение:
Задание 2. Вычислите степень (−3)−2
Решение:
Задание 3. Вычислите степень −3−2
Решение:
Задание 4. Вычислите степень (−1)−9
Решение:
Задание 5. Вычислите степень
Решение:
Задание 6. Вычислите степень
Решение:
Задание 7. Вычислите степень −(−2)−3
Решение:
Задание 8. Вычислите степень
Решение:
Задание 9. Найдите значение выражения 8 × 4−3
Решение:
Задание 10. Найдите значение выражения 18 × (−9)−1
Решение:
Задание 11. Найдите значение выражения 2−3 − (−2)−4
Решение:
Задание 12. Найдите значение выражения
Решение:
Задание 13. Представить произведение a4b в виде дроби, не содержащей степени с отрицательным показателем.
Решение:
Задание 14. Представить произведение 7xy3 в виде дроби, не содержащей степени с отрицательным показателем.
Решение:
Задание 15. Представить произведение 6(xy)6 в виде дроби, не содержащей степени с отрицательным показателем.
Решение:
Задание 16. Представить произведение x−1y−2 в виде дроби, не содержащей степени с отрицательным показателем.
Решение:
Задание 17. Представить произведение 9a−1(a − b)−2 в виде дроби, не содержащей степени с отрицательным показателем.
Решение:
Задание 18. Представьте дробь  в виде произведения.
Решение:
Задание 19. Представьте дробь  в виде произведения.
Решение:
Задание 20. Представьте дробь  в виде произведения.
Решение:
Задание 21. Представьте дробь  в виде произведения.
Решение:
Задание 22. Представьте дробь  в виде произведения.
Решение:
Задание 23. Представьте дробь  в виде произведения.
Решение:
Задание 24. Представьте дробь  в виде произведения.
Решение:
Задание 25. Представьте дробь  в виде произведения.
Решение:
Задание 26. Представьте дробь  в виде произведения.
Решение:
Задание 27. Представьте число 3 000 000 в стандартном виде.
Решение:
3 000 000 = 3 × 106
Задание 28. Представьте число 0,35 в стандартном виде.
Решение:
0,35 = 3,5 × 10−1
Задание 29. Представьте число 21,56 в стандартном виде.
Решение:
21,56 = 2,156 × 101
Задание 30. Представьте число 0,000008 в стандартном виде.
Решение:
0,000008 = 8 × 10−6
Задание 31. Представьте число 0,000335 в стандартном виде.
Решение:
0,000335 = 3,35 × 10−4
Задание 32. Найдите значение выражения .
Решение:
Задание 33. Найдите значение выражения .
Решение:
Задание 34. Найдите значение выражения .
Решение:
Задание 35. Представьте в виде степени выражение .
Решение:
Задание 36. Представьте в виде степени выражение .
Решение:
Задание 37. Представьте в виде степени выражение .
Решение:
Задание 38. Представьте в виде степени выражение .
Решение:

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Степень с натуральным показателем

Что такое степень?

Степенью называют произведение из нескольких одинаковых множителей. Например:

2 × 2 × 2

Значение данного выражения равно 8

2 × 2 × 2 = 8

Левую часть этого равенства можно сделать короче – сначала записать повторяющийся множитель и указать над ним сколько раз он повторяется. Повторяющийся множитель в данном случае это 2. Повторяется он три раза. Поэтому над двойкой записываем тройку:

23 = 8

Это выражение читается так: «два в третьей степени равно восемь» или «третья степень числа 2 равна 8».

Короткую форму записи перемножения одинаковых множителей используют чаще. Поэтому надо помнить, что если над каким-то числом надписано другое число, то это есть перемножение нескольких одинаковых множителей.

Например, если дано выражение 53, то следует иметь ввиду, что это выражение равносильно записи 5 × 5 × 5.

Число, которое повторяется называют основанием степени. В выражении 5основанием степени является число 5.

А число, которое надписано над числом 5 называют показателем степени. В выражении 5показателем степени является число 3. Показатель степени показывает сколько раз повторяется основание степени. В нашем случае основание 5 повторяется три раза

пять в кубе расшифровка

Саму операцию перемножения одинаковых множителей называют возведением в степень.

Например, если нужно найти произведение из четырёх одинаковых множителей, каждый из которых равен 2, то говорят, что число 2 возводится в четвёртую степень:

2 в 4 равно 16

Видим, что число 2 в четвёртой степени есть число 16.

Отметим, что в данном уроке мы рассматриваем степени с натуральным показателем. Это вид степени, показателем которой является натуральное число. Напомним, что натуральными называют целые числа, которые больше нуля. Например, 1, 2, 3 и так далее.

Вообще, определение степени с натуральным показателем выглядит следующим образом:

Степень числа a с натуральным показателем n — это выражение вида an, которое равно произведению n множителей, каждый из которых равен a

произведение n множителей

Примеры:

произведение n множителей 2

Следует быть внимательным при возведении числа в степень. Часто по невнимательности человек умножает основание степени на показатель.

Например, число 5 во второй степени есть произведение двух множителей каждый из которых равен 5. Это произведение равно 25

5 в 2 равно 25

Теперь представим, что мы по невнимательности умножили основание 5 на показатель 2

5 в 2 не равно 10

Получилась ошибка, поскольку число 5 во второй степени не равно 10.

Дополнительно следует упомянуть, что степень числа с показателем 1, есть само это число:

a в степени единица есть a

Например, число 5 в первой степени есть само число 5

пять в первой степени есть пять

Соответственно, если у числа отсутствует показатель, то надо считать, что показатель равен единице.

Например, числа 1, 2, 3 даны без показателя, поэтому их показатели будут равны единице. Каждое из этих чисел можно записать с показателем 1

числа 1 2 3 с показателями 1

А если возвести 0 в какую-нибудь степень, то получится 0. Действительно, сколько бы раз ничего не умножалось на само себя получится ничего. Примеры:

0 в 1 0 в 2 0 в 3

А выражение 0 не имеет смысла. Но в некоторых разделах математики, в частности анализе и теории множеств, выражение 00 может иметь смысл.

Для тренировки решим несколько примеров на возведение чисел в степени.

Пример 1. Возвести число 3 во вторую степень.

Число 3 во второй степени это произведение двух множителей, каждый из которых равен 3

32 = 3 × 3 = 9


Пример 2. Возвести число 2 в четвертую степень.

Число 2 в четвертой степени это произведение четырёх множителей, каждый из которых равен 2

24 =2 × 2 × 2 × 2 = 16


Пример 3. Возвести число 2 в третью степень.

Число 2 в третьей степени это произведение трёх множителей, каждый из которых равен 2

23 =2 × 2 × 2 = 8


Возведение в степень числа 10

Чтобы возвести в степень число 10, достаточно дописать после единицы количество нулей, равное показателю степени.

Например, возведем число 10 во вторую степень. Сначала запишем само число 10 и в качестве показателя укажем число 2

102

Теперь ставим знак равенства, записываем единицу и после этой единицы записываем два нуля, поскольку количество нулей должно быть равно показателю степени

102 = 100

Значит, число 10 во второй степени это число 100. Связано это с тем, что число 10 во второй степени это произведение двух множителей, каждый из которых равен 10

102 = 10 × 10 = 100


Пример 2. Возведём число 10 в третью степень.

В данном случае после единицы будут стоять три нуля:

103 = 1000


Пример 3. Возведем число 10 в четвёртую степень.

В данном случае после единицы будут стоять четыре нуля:

104 = 10000


Пример 4. Возведем число 10 в первую степень.

В данном случае после единицы будет стоять один нуль:

101 = 10


Представление чисел 10, 100, 1000 в виде степени с основанием 10

Чтобы представить числа 10, 100, 1000 и 10000 в виде степени с основанием 10, нужно записать основание 10, и в качестве показателя указать число, равное количеству нулей исходного числа.

Представим число 10 в виде степени с основанием 10. Видим, что в нём один нуль. Значит, число 10 в виде степени с основанием 10 будет представлено как 101

10 = 101


Пример 2. Представим число 100 в виде степени основанием 10. Видим, что число 100 содержит два нуля. Значит, число 100 в виде степени с основанием 10 будет представлено как 102

100 = 102


Пример 3. Представим число 1 000 в виде степени с основанием 10.

1 000 = 103


Пример 4. Представим число 10 000 в виде степени с основанием 10.

10 000 = 104


Возведение в степень отрицательного числа

При возведении в степень отрицательного числа, его обязательно нужно заключить в скобки.

Например, возведём отрицательное число −2 во вторую степень. Число −2 во второй степени это произведение двух множителей, каждый из которых равен (−2)

(−2)2 = (−2) × (−2) = 4

Если бы мы не заключили в скобки число −2, то получилось бы, что мы вычисляем выражение −22, которое не равно 4. Выражение −2² будет равно −4. Чтобы понять почему, коснёмся некоторых моментов.

Когда мы ставим перед положительным числом минус, мы тем самым выполняем операцию взятия противоположного значения.

Допустим, дано число 2, и нужно найти его противоположное число. Мы знаем, что противоположное числу 2 это число −2. Иными словами, чтобы найти противоположное число для 2, достаточно поставить минус перед этим числом. Вставка минуса перед числом уже считается в математике полноценной операцией. Эту операцию, как было указано выше, называют операцией взятия противоположного значения.

В случае с выражением −22 происходит две операции: операция взятия противоположного значения и возведение в степень. Возведение в степень является более приоритетной операцией, чем взятие противоположного значения.

Поэтому выражение −22 вычисляется в два этапа. Сначала выполняется операция возведения в степень. В данном случае во вторую степень было возведено положительное число 2

Затем выполнилось взятие противоположного значения. Это противоположное значение было найдено для значения 4. А противоположное значение для 4 это −4

−2 = −4

Скобки же имеют самый высокий приоритет выполнения. Поэтому в случае вычисления выражения (−2)2 сначала выполняется взятие противоположного значения, а затем во вторую степень возводится отрицательное число −2. В результате получается положительный ответ 4, поскольку произведение отрицательных чисел есть положительное число.

Пример 2. Возвести число −2 в третью степень.

Число −2 в третьей степени это произведение трёх множителей, каждый из которых равен (−2)

(−2)3 = (−2) × (−2) × (−2) = −8


Пример 3. Возвести число −2 в четвёртую степень.

Число −2 в четвёртой степени это произведение четырёх множителей, каждый из которых равен (−2)

(−2)4 = (−2) × (−2) × (−2) × (−2) = 16

Легко заметить, что при возведении в степень отрицательного числа может получиться либо положительный ответ либо отрицательный. Знак ответа зависит от показателя исходной степени.

Если показатель степени чётный, то ответ будет положительным. Если показатель степени нечётный, ответ будет отрицательным. Покажем это на примере числа −3

-3 в разных степенях

В первом и в третьем случае показатель был нечётным числом, поэтому ответ стал отрицательным.

Во втором и в четвёртом случае показатель был чётным числом, поэтому ответ стал положительным.


Пример 7. Возвести число −5 в третью степень.

Число −5 в третьей степени это произведение трёх множителей каждый из которых равен −5. Показатель 3 является нечётным числом, поэтому мы заранее можем сказать, что ответ будет отрицательным:

(−5)3 = (−5) × (−5) × (−5) = −125


Пример 8. Возвести число −4 в четвёртую степень.

Число −4 в четвёртой степени это произведение четырёх множителей, каждый из которых равен −4. При этом показатель 4 является чётным, поэтому мы заранее можем сказать, что ответ будет положительным:

(−4)4 = (−4) × (−4) × (−4) × (−4) = 256


Нахождение значений выражений

При нахождении значений выражений, не содержащих скобки, возведение в степень будет выполняться в первую очередь, далее умножение и деление в порядке их следования, а затем сложение и вычитание в порядке их следования.

Пример 1. Найти значение выражения 2 + 52

Сначала выполняется возведение в степень. В данном случае во вторую степень возводится число 5 — получается 25. Затем этот результат складывается с числом 2

2 + 52 = 2 + 25 = 27


Пример 10. Найти значение выражения −62 × (−12)

Сначала выполняется возведение в степень. Заметим, что число −6 не взято в скобки, поэтому во вторую степень будет возведено число 6, затем перед результатом будет поставлен минус:

−62 × (−12) = −36 × (−12)

Завершаем пример, умножив −36 на (−12)

−62 × (−12) = −36 × (−12) = 432


Пример 11. Найти значение выражения −3 × 22

Сначала выполняется возведение в степень. Затем полученный результат перемножается с числом −3

−3 × 22 = −3 × 4 = −12

Если выражение содержит скобки, то сначала нужно выполнить действия в этих скобках, далее возведение в степень, затем умножение и деление, а затем сложение и вычитание.


Пример 12. Найти значение выражения (32 + 1 × 3) − 15 + 5

Сначала выполняем действия в скобках. Внутри скобок применяем ранее изученные правила, а именно сначала возводим во вторую степень число 3, затем выполняем умножение 1 × 3, затем складываем результаты возведения в степень числа 3 и умножения 1 × 3. Далее выполняется вычитание и сложение в порядке их следования. Расставим такой порядок выполнения действия над исходным выражением:

3 в 2 на 1 на 3 - 15 на 5 шаг 1

(32 + 1 × 3) − 15 + 5 = 12 − 15 + 5 = 2


Пример 13. Найти значение выражения 2 × 53 + 5 × 23

Сначала возведем числа в степени, затем выполним умножение и сложим полученные результаты:

2 × 53 + 5 × 23 = 2 × 125 + 5 × 8 = 250 + 40 = 290


Тождественные преобразования степеней

Над степенями можно выполнять различные тождественные преобразования, тем самым упрощая их.

Допустим, потребовалось вычислить выражение (23)2. В данном примере два в третьей степени возводится во вторую степень. Иными словами, степень возводится в другую степень.

(23)2 это произведение двух степеней, каждая из которых равна 23

2 в 3 на 2 в 3

При этом каждая из этих степеней является произведением трёх множителей, каждый из которых равен 2

2 в 3 в 2 шаг 1

Получили произведение 2 × 2 × 2 × 2 × 2 × 2, которое равно 64. Значит значение выражения (23)2 или равно 64

2 в 3 в 2 шаг 3

Этот пример можно значительно упростить. Для этого показатели выражения (23)2 можно перемножить и записать это произведение над основанием 2

2 в 3 в 2 шаг 2

Получили 26. Два в шестой степени это произведение шести множителей, каждый из которых равен 2. Это произведение равно 64

2 в 3 в 2 шаг 4

Данное свойство работает по причине того, что 23 это произведение 2 × 2 × 2, которое в свою очередь повторяется два раза. Тогда получается, что основание 2 повторяется шесть раз. Отсюда можно записать, что 2 × 2 × 2 × 2 × 2 × 2 это 26

Вообще, для любого основания a с показателями m и n, выполняется следующее равенство:

(an)m = an × m

Это тождественное преобразование называют возведением степени в степень. Это преобразование можно прочитать так: «При возведении степени в степень основание оставляют без изменений, а показатели перемножают».

После перемножения показателей, получится другая степень, значение которой можно найти.

Пример 2. Найти значение выражения (32)2

В данном примере основанием является 3, а числа 2 и 2 являются показателями. Воспользуемся правилом возведения степени в степень. Основание оставим без изменений, а показатели перемножим:

Получили 34. А число 3 в четвёртой степени есть 81

3 в 2 в 2 шаг 2

Рассмотрим остальные преобразования.

Умножение степеней

Чтобы перемножить степени, нужно по отдельности вычислить каждую степень, и полученные результаты перемножить.

Например, умножим 22 на 33.

22 это число 4, а 33 это число 27. Перемножаем числа 4 и 27, получаем 108

22 × 33 = 4 × 27 = 108

В этом примере основания степеней были разными. В случае, если основания будут одинаковыми, то можно записать одно основание, а в качестве показателя записать сумму показателей исходных степеней.

Например, умножим 22 на 23

В данном примере основания у степеней одинаковые. В этом случае можно записать одно основание 2 и в качестве показателя записать сумму показателей степеней 22 и 23. Иными словами, основание оставить без изменений, а показатели исходных степеней сложить. Выглядеть это будет так:

2 в 2 на 2 в 3 шаг 1

Получили 25. Число 2 в пятой степени есть 32

2 в 2 на 2 в 3 шаг 2

Данное свойство работает по причине того, что 22 это произведение 2 × 2, а 23 это произведение 2 × 2 × 2. Тогда получается произведение из пяти одинаковых множителей, каждый из которых равен 2. Это произведение представимо в виде 25

2 в 2 на 2 в 3 шаг 3

Вообще, для любого a и показателей m и n выполняется следующее равенство:

a v m na a v n

Это тождественное преобразование носит название основного свойства степени. Его можно прочитать так: «При перемножении степеней с одинаковыми основаниями, основание оставляют без изменений, а показатели складывают».

Отметим, что данное преобразование можно применять при любом количестве степеней. Главное, чтобы основание было одинаковым.

Например, найдем значение выражения 21 × 22 × 23. Основание 2 оставим без изменений, а показатели сложим:

2 в 1 на 2 в 2 на 2 в 3

В некоторых задачах достаточным бывает выполнить соответствующее преобразование, не вычисляя итоговую степень. Это конечно же очень удобно, поскольку вычислять большие степени не так-то просто.

Пример 1. Представить в виде степени выражение 58 × 25

В данной задаче нужно сделать так, чтобы вместо выражения 58 × 25 получилась одна степень.

Число 25 можно представить в виде 52. Тогда получим следующее выражение:

5 в 8 на 25 шаг 3

В этом выражении можно применить основное свойство степени — основание 5 оставить без изменений, а показатели 8 и 2 сложить:

5 в 8 на 25 шаг 4

Задачу можно считать решённой, поскольку мы представили выражение 58 × 25 в виде одной степени, а именно в виде степени 510.

Запишем решение покороче:

5 в 8 на 25 шаг 5


Пример 2. Представить в виде степени выражение 29 × 32

Число 32 можно представить в виде 25. Тогда получим выражение 29 × 25. Далее можно применить основание свойство степени — основание 2 оставить без изменений, а показатели 9 и 5 сложить. В результате получится следующее решение:

2 в 9 на 32 решение


Пример 3. Вычислите произведение 3 × 3, используя основное свойство степени.

Все хорошо знают, что три умножить на три равно девять, но задача требует в ходе решения воспользоваться основным свойством степени. Как это сделать?

Вспоминаем, что если число дано без показателя, то показатель нужно считать равным единице. Стало быть сомножители 3 и 3 можно записать в виде 31 и 31

31 × 31

Теперь воспользуемся основным свойством степени. Основание 3 оставляем без изменений, а показатели 1 и 1 складываем:

31 × 31 = 32

Далее вычисляем значение выражения. Число 3 во второй степени равно числу 9

31 × 31 = 32 = 9


Пример 4. Вычислите произведение 2 × 2 × 32 × 33, используя основное свойство степени.

Произведение 2 × 2 заменим на 21 × 21, затем на 21 + 1, а затем на 22. Произведение 32 × 33 заменим на 32 + 3, а затем на 35

2 2 3 3 на 2 и 3 шаг 2

Далее вычисляем значение каждой степени и находим произведение:

2 2 3 3 на 2 и 3 решение


Пример 5. Выполнить умножение x × x

Это два одинаковых буквенных сомножителя с показателями 1. Для наглядности запишем эти показатели. Далее основание x оставим без изменений, а показатели сложим:

xx решение

Находясь у доски, не следует записывать перемножение степеней с одинаковыми основаниями так подробно, как это сделано здесь. Такие вычисления нужно выполнять в уме. Подробная запись скорее всего будет раздражать учителя и он снизит за это оценку. Здесь же подробная запись дана, чтобы материал был максимально доступным для понимания.

Решение данного примера желательно записать так:

xx решение подробно


Пример 6. Выполнить умножение x2 × x

Показатель второго сомножителя равен единице. Для наглядности запишем его. Далее основание оставим без изменений, а показатели сложим:

x v 2 na x решение


Пример 7. Выполнить умножение y3y2y

Показатель третьего сомножителя равен единице. Для наглядности запишем его. Далее основание оставим без изменений, а показатели сложим:

y v 3 y v 3 y решение


Пример 8. Выполнить умножение aa3a2a5

Показатель первого сомножителя равен единице. Для наглядности запишем его. Далее основание оставим без изменений, а показатели сложим:

aa v 3 a v 2 a v 5 решение


Пример 9. Представить степень 38 в виде произведения степеней с одинаковыми основаниями.

В данной задаче нужно составить произведение степеней, основания которых будут равны 3, и сумма показателей которых будет равна 8. Можно использовать любые показатели. Представим степень 38 в виде произведения степеней 35 и 33

3 v 8 ravno 3 v 5 na 3 v 3

В данном примере мы опять же опирались на основное свойство степени. Ведь выражение 35 × 33 можно записать как 35 + 3, откуда 38.

Конечно можно было представить степень 38 в виде произведения других степеней. Например, в виде 37 × 31, поскольку это произведение тоже равно 38

3 в 7 на 3 в 1 есть 3 в 8

Представление степени в виде произведения степеней с одинаковыми основаниями это по большей части творческая работа. Поэтому не нужно бояться экспериментировать.


Пример 10. Представить степень x12 в виде различных произведений степеней с основаниями x.

Воспользуемся основным свойство степени. Представим x12 в виде произведений с основаниями x, и сумма показателей которых равна 12

x12 в виде разных произведений

Конструкции с суммами показателей были записаны для наглядности. Чаще всего их можно пропустить. Тогда получится компактное решение:

x12 в виде разных произведений 2


Возведение в степень произведения

Чтобы возвести в степень произведение, нужно возвести в указанную степень каждый множитель этого произведения и перемножить полученные результаты.

Например, возведём во вторую степень произведение 2 × 3. Возьмём в скобки данное произведение и в качестве показателя укажем 2

2 на 3 в 2

Теперь возведём во вторую степень каждый множитель произведения 2 × 3 и перемножим полученные результаты:

2 на 3 в 2 решение

Принцип работы данного правила основан на определении степени, которое было дано в самом начале.

Возвести произведение 2 × 3 во вторую степень означает повторить данное произведение два раза. А если повторить его два раза, то можно получить следующее:

2 × 3 × 2 × 3

От перестановки мест сомножителей произведение не меняется. Это позволяет сгруппировать одинаковые множители:

2 × 2 × 3 × 3

Повторяющиеся множители можно заменить на короткие записи — основания с показателями. Произведение 2 × 2 можно заменить на 22, а произведение 3 × 3 можно заменить на 32. Тогда выражение 2 × 2 × 3 × 3 обращается в выражение 22 × 32.

Пусть ab исходное произведение. Чтобы возвести данное произведение в степень n, нужно по отдельности возвести множители a и b в указанную степень n

ab в n формула

Данное свойство справедливо для любого количества множителей. Следующие выражения также справедливы:

abcd v n formula


Пример 2. Найти значение выражения (2 × 3 × 4)2

В данном примере нужно возвести во вторую степень произведение 2 × 3 × 4. Чтобы сделать это, нужно возвести во вторую степень каждый множитель этого произведения и перемножить полученные результаты:

2 na 3 na 4 v 2


Пример 3. Возвести в третью степень произведение a × b × c

Заключим в скобки данное произведение, и в качестве показателя укажем число 3

abc v 3

Далее возводим в третью степень каждый множитель данного произведения:

abc v 3 решение


Пример 4. Возвести в третью степень произведение 3xyz

Заключим в скобки данное произведение, и в качестве показателя укажем 3

(3xyz)3

Возведём в третью степень каждый множитель данного произведения:

(3xyz)3 = 33x3y3z3

Число 3 в третьей степени равно числу 27. Остальное оставим без изменений:

(3xyz)3 = 33x3y3z3 = 27x3y3z3

В некоторых примерах умножение степеней с одинаковыми показателями можно заменять на произведение оснований с одним показателем.

Например, вычислим значение выражения 52 × 32. Возведем каждое число во вторую степень и перемножим полученные результаты:

52 × 32 = 25 × 9 = 225

Но можно не вычислять по отдельности каждую степень. Вместо этого, данное произведение степеней можно заменить на произведение с одним показателем (5 × 3)2. Далее вычислить значение в скобках и возвести полученный результат во вторую степень:

52 × 32 = (5 × 3)2 = (15)2 = 225

В данном случае опять же было использовано правило возведения в степень произведения. Ведь, если (a × b)n = an × bn, то an × bn = (a × b)n. То есть левая и правая часть равенства поменялись местами.


Возведение степени в степень

Это преобразование мы рассматривали в качестве примера, когда пытались понять суть тождественных преобразований степеней.

При возведении степени в степень основание оставляют без изменений, а показатели перемножают:

(an)m = an × m

К примеру, выражение (23)2 является возведением степени в степень — два в третьей степени возводится во вторую степень. Чтобы найти значение этого выражения, основание можно оставить без изменений, а показатели перемножить:

(23)2 = 23 × 2 = 26

Далее вычислить степень 26, которая равна 64

(23)2 = 23 × 2 = 26 = 64

Данное правило основано на предыдущих правилах: возведении в степень произведения и основного свойства степени.

Вернёмся к выражению (23)2. Выражение в скобках 23 представляет собой произведение из трёх одинаковых множителей, каждый из которых равен 2. Тогда в выражении (23)2 степень, находящуюся внутри скобок можно заменить на произведение 2 × 2 × 2.

(2 × 2 × 2)2

А это есть возведение в степень произведения, которое мы изучили ранее. Напомним, что для возведения в степень произведения, нужно возвести в указанную степень каждый множитель данного произведения и полученные результаты перемножить:

(2 × 2 × 2)2 = 22 × 22 × 22

Теперь имеем дело с основным свойством степени. Основание оставляем без изменений, а показатели складываем:

(2 × 2 × 2)2 = 22 × 22 × 22 = 22 + 2 + 2 = 26

Как и раньше получили 26. Значение этой степени равно 64

(2 × 2 × 2)2 = 22 × 22 × 22 = 22 + 2 + 2 = 26 = 64

В степень также может возводиться произведение, сомножители которого тоже являются степенями.

Например, найдём значение выражения (22 × 32)3. Здесь показатели каждого множителя нужно умножить на общий показатель 3. Далее найти значение каждой степени и вычислить произведение:

(22 × 32)= 22×3  × 32×3 = 2× 36 = 64 × 729 = 46656

Примерно тоже самое происходит при возведении в степени произведения. Мы говорили, что при возведении в степень произведения, в указанную степень возводится каждый множитель этого произведения.

Например, чтобы возвести произведение 2 × 4 в третью степень, нужно записать следующее выражение:

2 на 4 в 3

Но ранее было сказано, что если число дано без показателя, то показатель надо считать равным единице. Получается, что множители произведения 2 × 4 изначально имеют показатели равные 1. Значит в третью степень возводилось выражение 21 × 41. А это есть возведение степени в степень.

Перепишем решение с помощью правила возведения степени в степень. У нас должен получиться тот же результат:

2 в 1 на 4 в в 3 решение


Пример 2. Найти значение выражения (33)2

Основание оставляем без изменений, а показатели перемножаем:

3 в 3 в 2 шаг 2

Получили 36. Число 3 в шестой степени есть число 729

3 в 3 в 2 решение


Пример 3. Выполнить возведение в степень в выражении (xy

Возведём в третью степень каждый множитель произведения:

xy v 3


Пример 4. Выполнить возведение в степень в выражении (abc)⁵

Возведём в пятую степень каждый множитель произведения:

abc v 5


Пример 5. Выполнить возведение в степень в выражении (−2ax)3

Возведём в третью степень каждый множитель произведения:

-2ax v 3 шаг 2

Поскольку в третью степень возводилось отрицательное число −2, оно было взято в скобки.

Далее нужно вычислить то, что вычисляется. В данном случае можно вычислить (−2)3 — получится −8. Буквенная часть останется без изменений:

-2ax v 3 решение


Пример 6. Выполнить возведение в степень в выражении (10xy)2

10xy v 2 решение


Пример 7. Выполнить возведение в степень в выражении (−5x)3

-5x v 3 решение


Пример 8. Выполнить возведение в степень в выражении (−3y)4

-3y v 4 решение


Пример 9. Выполнить возведение в степень в выражении (−2abx)⁴

-2abx v 4 решение


Пример 10. Упростите выражение x5 × (x2)3 

Степень x5 пока оставим без изменений, а в выражении (x2)3 выполним возведение степени в степени:

x5 × (x2)3 = x5 × x2 × 3 = x5 × x6

Теперь выполним умножение x5× x6. Для этого воспользуемся основным свойством степени — основание x оставим без изменений, а показатели сложим:

x5 × (x2)3 = x5 × x2× 3 = x5 × x6 = x5 + 6x11


Пример 9. Найти значение выражения 43 × 22, используя основное свойство степени.

Основное свойство степени можно использовать в случае, если основания  исходных степеней одинаковы. В данном примере основания разные, поэтому для начала исходное выражение нужно немного видоизменить, а именно сделать так, чтобы основания степеней стали одинаковыми.

Посмотрим внимательно на степень 43. Основание у этой степени есть число 4, которое можно представить в виде 22. Тогда исходное выражение примет вид (22)3 × 22. Выполнив возведение степени в степень в выражении (22)3, мы получим 26. Тогда исходное выражение примет вид 26 × 22, вычислить которое можно, используя основное свойство степени.

Запишем решение данного примера:

4 v 3 na 2 v 2


Деление степеней

Чтобы выполнить деление степеней, нужно найти значение каждой степени, затем выполнить деление обыкновенных чисел.

Например, разделим 43 на 22.

Вычислим 43, получим 64. Вычислим 22, получим 4. Теперь разделим 64 на 4, получим 16

64 na 4 деление уголком

Если при делении степеней основания окажутся одинаковыми, то основание можно оставить без изменений, а из показателя степени делимого вычесть показатель степени делителя.

Например, найдем значение выражения 23 : 22

Основание 2 оставим без изменений, а из показателя степени делимого вычтем показатель степени делимого:

2 в 3 на 2 в 2 решение

Значит, значение выражения 23 : 22 равно 2.

Данное свойство основано на умножении степеней с одинаковыми основаниями, или как мы привыкли говорить на основном свойстве степени.

Вернемся к предыдущему примеру 23 : 22. Здесь делимое это 23, а делитель 22.

Разделить одно число на другое означает найти такое число, которое при умножении на делитель даст в результате делимое.

В нашем случае, разделить 23 на 22 означает найти такую степень, которая при умножении на делитель 22 даст в результате 23. А какую степень можно умножить на 22, чтобы получить 23 ? Очевидно, что только степень 21. Из основного свойства степени имеем:

2 в 1 на 2 в 2 умножение

Убедиться, что значение выражения 23 : 22 равно 21 можно непосредственно вычислив само выражение 23 : 22. Для этого сначала найдём значение степени 23, получим 8. Затем найдём значение степени 22, получим 4. Разделим 8 на 4, получим 2 или 21, поскольку 2 = 21.

23 : 22 = 8 : 4 = 2

Таким образом, при делении степеней с одинаковыми основаниями выполняется следующее равенство:

a v m na a v n formula

Может случиться и так, что одинаковыми могут оказаться не только основания, но и показатели. В этом случае в ответе получится единица.

Например, найдём значение выражения 22 : 22. Вычислим значение каждой степени и выполним деление получившихся чисел:

2 v 2 na 2 v 2

При решении примера 22 : 22 также можно применить правило деления степеней с одинаковыми основаниями. В результате получается число в нулевой степени, поскольку разность показателей степеней 22 и 22 равна нулю:

2 v 2 na 2 v 2 решение 2

В математике принято считать, что любое число в нулевой степени есть единица:

2 v 2 na 2 v 2 решение 3

Почему число 2 в нулевой степени равно единице мы выяснили выше. Если вычислить 22 : 22 обычным методом, не используя правило деления степеней, получится единица.


Пример 2. Найти значение выражения 412 : 410

Воспользуемся правилом деления степеней. Основание 4 оставим без изменений, а из показателя степени делимого вычтем показатель степени делителя:

412 : 410 = 412 − 10 = 42 = 16


Пример 3. Представить частное x3 : x в виде степени с основанием x

Воспользуемся правилом деления степеней. Основание x оставим без изменений, а из показателя степени делимого вычтем показатель степени делителя. Показатель делителя равен единице. Для наглядности запишем его:

x v 3 na x v 1


Пример 4. Представить частное x3 : x2 в виде степени с основанием x

Воспользуемся правилом деления степеней. Основание x оставим без изменений, а из показателя степени делимого вычтем показатель степени делителя:

x v 3 na x v 2

Деление степеней можно записывать в виде дроби. Так, предыдущий пример можно записать следующим образом:

x v 3 na x v 2 2

Числитель и знаменатель дроби x v 3 na x v 2 3 разрешается записывать в развёрнутом виде, а именно в виде произведений одинаковых множителей. Степень x3 можно записать как x × x × x, а степень x2 как x × x. Тогда конструкцию x3 − 2 можно будет пропустить и воспользоваться сокращением дроби. В числителе и в знаменателе можно будет сократить по два множителя x. В результате останется один множитель x

x v 3 na x v 2 4

Или ещё короче:

x v 3 na x v 2 5

Также, полезно уметь быстро сокращать дроби, состоящие из степеней. Например, дробь x v 3 na x v 2 3 можно сократить на x2. Чтобы сократить дробь x v 3 na x v 2 3 на x2 нужно числитель и знаменатель дроби x v 3 na x v 2 3 разделить на x2

x v 3 na x v 2 6

Деление степеней подробно можно не расписывать. Приведённое сокращение можно выполнить короче:

x v 3 na x v 2 7

Или ещё короче:

x v 3 na x v 2 8


Пример 5. Выполнить деление x12 : x3

Воспользуемся правилом деления степеней. Основание x оставим без изменений, а из показателя степени делимого вычтем показатель степени делителя:

x v 12 na x 3

Запишем решение при помощи сокращения дроби. Деление степеней x12 : x3 запишем в виде x v 12 na x v 3 . Далее сократим данную дробь на x3.

x v 12 na x v 3 2


Пример 6. Найти значение выражения 7 v 9 na 7 v 5 na 7 v 12

В числителе выполним умножение степеней с одинаковыми основаниями:

7 v 9 na 7 v 5 na 7 v 12 шаг 2

Теперь применяем правило деления степеней с одинаковыми основаниями. Основание 7 оставляем без изменений, а из показателя степени делимого вычтем показатель степени делителя:

7 v 9 na 7 v 5 na 7 v 12 шаг 3

Завершаем пример, вычислив степень 72

7 v 9 na 7 v 5 na 7 v 12 решение


Пример 7. Найти значение выражения 2 v na 2 v 3 v 4 na 2 v 13

Выполним в числителе возведение степени в степень. Сделать это нужно с выражением (23)4

2 v na 2 v 3 v 4 na 2 v 13 шаг 2

Теперь выполним в числителе умножение степеней с одинаковыми основаниями:

2 v na 2 v 3 v 4 na 2 v 13 шаг 3

Теперь применяем правило деления степеней с одинаковыми основаниями:

2 v na 2 v 3 v 4 na 2 v 13 решение

Значит, значение выражения 2 v na 2 v 3 v 4 na 2 v 13 равно 16

В некоторых примерах можно сокращать одинаковые множители в ходе решения. Это позволяет упростить выражение и само вычисление в целом.

Например, найдём значение выражения 4 v 3 na 3 v 2 na 2 v 6. Степень 43 запишем в виде возведения степени в степень (22)3. Тогда получим следующее выражение:

4 v 3 na 3 v 2 na 2 v 6 шаг 2

В числителе выполним возведение степени в степень. Сделать это нужно с выражением (22)3

4 v 3 na 3 v 2 na 2 v 6 шаг 3

В числителе и в знаменателе получившегося выражения содержится степень 26, которую можно сократить на 26

4 v 3 na 3 v 2 na 2 v 6 решение

Видим, что в результате осталась единственная степень 32, значение которой равно 9.


Пример 8. Найти значение выражения 28 v 6 na 7 v 5 na 4 v 5 пример

В знаменателе содержится произведение степеней с одинаковыми показателями. Согласно правилу возведения в степень произведения, конструкцию 75 × 45 можно представить в виде степени с одним показателем (7 × 4)5. Далее перемножим выражение в скобках, получим 285. В результате исходное выражение примет следующий вид:

28 v 6 na 28 v 5

Теперь можно применить правило деления степеней:

28 v 6 na 28 v 5 шаг 2

Значит, значение выражения 28 v 6 na 7 v 5 na 4 v 5 пример равно 28. Запишем решение полностью:

28 v 6 na 28 v 5 решение


Возведение в степень обыкновенных дробей

Чтобы возвести в степень обыкновенную дробь, нужно возвести в указанную степень числитель и знаменатель этой дроби.

Например, возведём обыкновенную дробь две третьих во вторую степень. Возьмём в скобки данную дробь и в качестве показателя укажем 2

2 на 3 v 2

Если не брать в скобки всю дробь, то это равносильно возведению в степень только числителя данной дроби. Иными словами, если мы хотим возвести во вторую степень дробь две третьих, мы не должны записывать это как 2 на 3 v 2 2.

Итак, чтобы вычислить значение выражения 2 на 3 v 2, нужно возвести во вторую степень числитель и знаменатель данной дроби:

2 на 3 v 2 шаг 2

Получили дробь в числителе и в знаменателе которой содержатся степени. Вычислим каждую степень по отдельности

2 на 3 v 2 решение

Значит обыкновенная дробь две третьих во второй степени равна дроби .

Приведённое правило работает следующим образом. Дробь две третьих во второй степень это произведение двух дробей, каждая из которых равна две третьих

2 на 3 v 2 объяснение

Мы помним, что для перемножения дробей необходимо перемножить их числители и знаменатели:

2 на 3 v 2 объяснение 2

А поскольку в числителе и в знаменателе происходит перемножение одинаковых множителей, то выражения 2 × 2 и 3 × 3 можно заменить на 22 и 32 соответственно:

2 на 3 v 2 шаг 3

Откуда и получится ответ .

Вообще, для любого a и ≠ 0 выполняется следующее равенство:

a na b v 2 формула

Это тождественное преобразование называют возведением в степень обыкновенной дроби.


Пример 2. Возвести дробь Три пятых в третью степень

Заключим данную дробь в скобки и в качестве показателя укажем число 3. Далее возведём числитель и знаменатель данной дроби в третью степень и вычислим получившуюся дробь:

3 на 5 v 3 решение

Отрицательная дробь возводится в степень таким же образом, но перед вычислениями надо определиться какой знак будет иметь ответ. Если показатель четный, то ответ будет положительным. Если показатель нечетный, то ответ будет отрицательным.

Например, возведём дробь минус одна вторая во вторую степень:

- 1 na 2 v 2

Показатель является чётным числом. Значит ответ будет положительным. Далее применяем правило возведения в степень дроби и вычисляем получившуюся дробь:

- 1 na 2 v 2 решение

Ответ положителен по причине того, что выражение - 1 na 2 v 2 представляет собой произведение двух сомножителей, каждый из которых равен дроби минус одна вторая

- 1 na 2 v 2 объяснение

А произведение отрицательных чисел (в том числе и рациональных) есть положительное число:

- 1 na 2 v 2 объяснение 2

Если возводить дробь минус одна вторая в третью степень, то ответ будет отрицательным, поскольку в данном случае показатель будет нечётным числом. Правило возведения в степень остаётся тем же, но перед выполнением этого возведения, нужно будет поставить минус:

-1 на 2 v 3 решение

Здесь ответ отрицателем по причине того, что выражение -1 на 2 v 3 представляет собой произведение трёх множителей, каждый из которых равен дроби минус одна вторая

-1 на 2 v 3 объяснение

Сначала перемножили минус одна вторая и минус одна вторая, получили одна четвертая, но затем умножив одна четвертая на минус одна вторая мы получим отрицательный ответ Минус одна восьмая

-1 на 2 v 3 объяснение 2


Пример 3. Найти значение выражения 2 в 2 на 4 в 2 - 3 на 16

Выполним возведение в степень обыкновенной дроби:

2 в 2 на 4 в 2 - 3 на 16 шаг 2

Далее вычислим значение получившегося выражения:

2 в 2 на 4 в 2 - 3 на 16 решение


Возведение в степень десятичных дробей

При возведении в степень десятичной дроби её необходимо заключить в скобки. Например, возведём во вторую степень десятичную дробь 1,5

15 в 2

Допускается переводить десятичную дробь в обыкновенную и возводить в степень эту обыкновенную дробь. Решим предыдущий пример, переведя десятичную дробь в обыкновенную:

15 в 2 решение 2


Пример 2. Найти значение степени (−1,5)3

Показатель степени является нечётным числом. Значит ответ будет отрицательным

-15 в 3 решение


Пример 3. Найти значение степени (−2,4)2

Показатель степени является чётным числом. Значит ответ будет положительным:

-24 в 2 решение


Задания для самостоятельного решения

Задание 1. Найдите значение выражения:
Решение:
Задание 2. Найдите значение выражения:
Решение:
Задание 3. Найдите значение выражения:
Решение:
Задание 4. Найдите значение выражения:
Решение:
Задание 5. Найдите значение выражения:
Решение:
Задание 6. Найдите значение выражения:
Решение:
Задание 7. Представьте в виде степени произведение:
Решение:
Задание 8. Представьте в виде степени произведение:
Решение:
Задание 9. Представьте в виде степени произведение:
Решение:
Задание 10. Представьте в виде степени произведение:
Решение:
Задание 11. Представьте в виде степени произведение:
Решение:
Задание 12. Представьте в виде степени произведение:
Решение:
Задание 13. Представьте в виде степени частное:
Решение:
Задание 14. Представьте в виде степени частное:
Решение:
Задание 15. Представьте в виде степени частное:
Решение:
Задание 16. Представьте в виде степени частное:
Решение:
Задание 17. Представьте в виде степени частное:
Решение:
Задание 18. Представьте в виде степени частное и найдите значение получившейся степени при = 3 и = 2
Решение:
Задание 19. Представьте в виде степени частное:
Решение:
Задание 20. Сократите дробь на
Решение:
Задание 21. Представьте в виде степени следующее произведение:
Решение:
Задание 22. Представьте в виде степени следующее произведение:
Решение:
Задание 23. Представьте в виде степени следующее произведение:
Решение:
Задание 24. Представьте в виде степени следующее произведение:
Решение:
Задание 25. Представьте в виде степени следующее произведение:
Решение:
Задание 26. Представьте следующую степень в виде произведения степеней:
Решение:
Задание 27. Представьте следующую степень в виде произведения степеней:
Решение:
Задание 28. Представьте следующую степень в виде произведения степеней:
Решение:
Задание 29. Пользуясь тождественными преобразованиями степеней, найдите значение следующего выражения:
Решение:
Задание 30. Пользуясь тождественными преобразованиями степеней, найдите значение следующего выражения:
Решение:
Задание 31. Пользуясь тождественными преобразованиями степеней, найдите значение следующего выражения:
Решение:
Задание 32. Представьте в виде степени следующее выражение:
Решение:
Задание 33. Представьте в виде степени следующее выражение:
Решение:
Задание 34. Представьте в виде степени следующее выражение:
Решение:
Задание 35. Представьте в виде степени следующее выражение:
Решение:
Задание 36. Представьте в виде степени следующее выражение:
Решение:
Задание 37. Представьте в виде степени следующее выражение:
Решение:
Задание 38. Найдите значение следующего выражения:
Решение:
Задание 39. Найдите значение следующего выражения:
Решение:
Задание 40. Найдите значение следующего выражения:
Решение:
Задание 41. Найдите значение следующего выражения:
Решение:
Задание 42. Найдите значение следующего выражения:
Решение:
Задание 43. Найдите значение следующего выражения:
Решение:
Задание 44. Найдите значение следующего выражения:
Решение:

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Операции над множествами

Пересечение множеств

Рассмотрим два множества: множество друзей Джона и множество друзей Майкла.

Друзья Джона = { Том,
Фред,
Макс,
Джорж }
Друзья Майкла = { Лео,
Том,
Фред,
Эван }

Видим, что Том и Фред одновременно являются друзьями Джона и Майкла.

Говоря на языке множеств, элементы Том и Фред принадлежат как множеству друзей Джона, так и множеству друзей Майкла.

Зададим новое множество с названием «Общие друзья Джона и Майкла» и в качестве элементов добавим в него Тома и Фреда:

Общие друзья Джона и Майкла = { Том, Фред }

В данном случае множество «Общие друзья Джона и Майкла» является пересечением множеств друзей Джона и Майкла.

Пересечением двух (или нескольких) исходных множеств называется множество, которое состоит из элементов, принадлежащих каждому из исходных множеств.

В нашем случае элементы Том и Фред принадлежат каждому из исходных множеств, а именно: множеству друзей Джона и множеству друзей Майкла.

Обозначим множество друзей Джона через букву A, множество друзей Майкла — через букву B, а множество общих друзей Джона и Майкла обозначим через букву C:

A = { Том, Фред, Макс, Джордж }

B = { Лео, Том, Фред, Эван }

C = { Том, Фред }

Тогда пересечением множеств A и B будет множество C и записываться следующим образом:

B = C

Символ  означает пересечение.

Говоря о множестве, обычно подразумевают элементы, принадлежащие этому множеству. Символ пересечения  читается, как союз И. Тогда выражение A ∩ B = C можно прочитать следующим образом:

«Элементы, принадлежащие множеству A И множеству B, есть элементы, принадлежащие множеству C».

Или еще проще:

«Друзья, одновременно принадлежащие Джону И Майклу, есть общие друзья Джона и Майкла».

Теперь представим, что у Джона и Майкла нет общих друзей. Для удобства, как и прежде обозначим множество друзей Джона через букву A, а множество друзей Майкла через букву B

A = { Макс, Джордж }

B = { Лео, Эван }

В этом случае говорят, что исходные множества не имеют общих элементов и пересечением таких множеств является пустое множество. Пустое множество обозначается символом 

A ∩ B = 


Пример 2. Рассмотрим два множества: множество A, состоящее из чисел 1, 2, 3, 5, 7 и множество B, состоящее из чисел 1, 2, 3, 4, 6, 12, 18

A = { 1, 2, 3, 5, 7 }

B = { 1, 2, 3, 4, 6, 12, 18 }

Зададим новое множество C и добавим в него элементы, которые одновременно принадлежат множеству A и множеству B

C = { 1, 2, 3 }

Множество С является пересечением множеств A и B, поскольку элементы множества C одновременно принадлежат множеству A и множеству B


Пример 3. Рассмотрим два множества: множество A, состоящее из чисел 1, 5, 7, 9 и множество B, состоящее из чисел 1, 4, 5, 7

A = { 1, 5, 7, 9 }

B = { 1, 4, 5, 7 }

Зададим новое множество C и добавим в него элементы, которые одновременно принадлежат множеству A и множеству B

C = { 1, 5, 7 }

Множество С является пересечением множеств A и B, поскольку элементы множества C одновременно принадлежат множеству A и множеству B.


Пример 4. Найти пересечение следующих множеств:

A = { 1, 2, 3, 7, 9 }

B = { 1, 3, 5, 7, 9}

С = { 3, 4, 5, 8,  9}

Пересечением множеств A, B и C будет множество, состоящее из элементов, принадлежащих каждому из множеств A, B и C. Этими элементами являются числа 3 и 9.

Зададим новое множество D и добавим в него элементы 3 и 9. Затем с помощью символа пересечения ∩ запишем, что пересечением множеств A, B и C является множество D

D = { 2, 3}

A ∩ B ∩ C = D

Чтобы найти пересечение, вовсе необязательно задавать множества с помощью букв. Если элементов мало, то множество можно задать прямым перечислением элементов.

К примеру, пусть первое множество состоит из элементов 1, 3, 5, а второе из элементов 2, 3, 5. Пересечением в данном случае является множество, состоящее из элементов 3 и 5. Чтобы записать пересечение, можно воспользоваться прямым перечислением:

{ 1, 3, 5 } ∩ { 2, 3, 5 } = { 3, 5 }

Числовые промежутки, которые мы рассмотрели в предыдущих уроках, тоже являются множествами. Элементами таких множеств являются числа, входящие в числовой промежуток.

Например, отрезок [2; 6] можно понимать, как множество всех чисел от 2 до 6. Для наглядности можно перечислить все целые числа, принадлежащие данному отрезку:

2, 3, 4, 5, 6 ∈ [2; 6]

Следует иметь ввиду, что мы перечислили только целые числа. Отрезку [2; 6] также принадлежат и другие числа, не являющиеся целыми, например, десятичные дроби. Десятичные дроби располагаются между целыми числами, но их количество настолько велико, что перечислить их не представляется возможным.

Еще пример. Интервал (2; 6) можно понимать, как множество всех чисел от 2 до 6, кроме чисел 2 и 6. Ранее мы говорили, что интервал это такой числовой промежуток, границы которого не принадлежат ему. Для наглядности можно перечислить все целые числа, принадлежащие интервалу (2; 6):

3, 4, 5 ∈ (2; 6)

Поскольку числовые промежутки являются множествами, то мы можем находить пересечения между различными числовыми промежутками. Рассмотрим несколько примеров.

Пример 5. Даны два числовых промежутка: [2; 6] и [4; 8]. Найти их пересечение.

Оба промежутка обрамлены квадратными скобками, значит их границы принадлежат им.

Для наглядности перечислим все целые числа, принадлежащие промежуткам [2; 6] и [4; 8]:

2, 3, 4, 5, 6 ∈ [2; 6]

4, 5, 6, 7, 8 ∈ [4; 8]

Видно, что числа 4, 5, 6 принадлежат как первому промежутку [2; 6], так и второму [4; 8].

Тогда пересечением числовых промежутков [2; 6] и [4; 8] будет числовой промежуток [4; 6]

[2; 6] ∩ [4; 8] = [4; 6]

Изобразим промежутки [2; 6] и [4; 8] на координатной прямой. На верхней области отметим числовой промежуток [2; 6], на нижней — промежуток [4; 8]

два промежутка на одной кп

Видно, что числа, принадлежащие промежутку [4; 6], принадлежат как промежутку [2; 6], так и промежутку [4; 8]. Можно также заметить, что штрихи, входящие в промежутки [2; 6] и [4; 8] пересекаются в промежутке [4; 6]. В такой ситуации, когда перед глазами есть координатная прямая, понятие пересечения множеств можно понимать в прямом смысле, что очень удобно.


Пример 6. Найти пересечение числовых промежутков [−2; 3] и [4; 7]

Оба промежутка обрамлены квадратными скобками, значит их границы принадлежат им.

Для наглядности перечислим все целые числа, принадлежащие промежуткам [−2; 3] и [4; 7]:

−2, −1, 0, 1, 2, 3 ∈ [−2; 3]

4, 5, 6, 7 ∈ [4; 7]

Видно, что числовые промежутки [−2; 3] и [4; 7] не имеют общих чисел. Поэтому их пересечением будет пустое множество:

[−2; 3] ∩ [4; 7] = Ø

Если изобразить числовые промежутки [−2; 3] и [4; 7] на координатной прямой, то можно увидеть, что они нигде не пересекаются:

-2 3 и 4 7 координатная прямая


Пример 7. Дано множество из одного элемента { 2 }. Найти его пересечение с промежутком (−3; 4)

Множество, состоящее из одного элемента { 2 }, на координатной прямой изображается в виде закрашенного кружка, а числовой промежуток (−3; 4) это интервал, границы которого не принадлежат ему. Значит границы −3 и 4 будут изображаться в виде пустых кружков:

-3 2 4 кп

Пересечением множества { 2 } и числового промежутка (−3; 4) будет множество, состоящее из одного элемента { 2 }, поскольку элемент 2 принадлежит как множеству { 2 }, так и числовому промежутку (−3; 4)

{ 2 } ∩ (−3; 4) = { 2 }

На самом деле мы уже занимались пересечением числовых промежутков, когда решали системы линейных неравенств. Вспомните, как мы решали их. Сначала находили множество решений первого неравенства, затем множество решений второго. Затем находили множество решений, которые удовлетворяют обоим неравенствам.

По сути, множество решений, удовлетворяющих обоим неравенствам, является пересечением множеств решений первого и второго неравенства. Роль этих множеств берут на себя числовые промежутки.

Например, чтобы решить систему неравенств x b i r 6 i x m r 3 , мы должны сначала найти множества решений каждого неравенства, затем найти пересечение этих множеств.

В данном примере решением первого неравенства ≥ 3 является множество всех чисел, которые больше 3 (включая само число 3). Иначе говоря, решением неравенства является числовой промежуток [3; +∞)

Решением второго неравенства ≤ 6 является множество всех чисел, которые меньше 6 (включая само число 6). Иначе говоря, решением неравенства является числовой промежуток (−∞; 6]

А общим решением системы будет пересечение множеств решений первого и второго неравенства, то есть пересечение числовых промежутков [3; +∞) и (−∞; 6]

Если мы изобразим множество решений системы x b i r 6 i x m r 3 на координатной прямой, то увидим, что эти решения принадлежат промежутку [3; 6], который в свою очередь является пересечением промежутков [3; +∞) и (−∞; 6]

[3; +∞) ∩ (−∞; 6] = [3; 6]

числовой промежуток от 3 до 6

Поэтому в качестве ответа мы указывали, что значения переменной x принадлежат числовому промежутку [3; 6], то есть пересечению множеств решений первого и второго неравенства

x ∈ [3; 6]


Пример 2. Решить неравенство x m -1 x m -5 x m 4

Все неравенства, входящие в систему уже решены. Нужно только указать те решения, которые являются общими для всех неравенств.

Решением первого неравенства является числовой промежуток (−∞; −1).

Решением второго неравенства является числовой промежуток (−∞; −5).

Решением третьего неравенства является числовой промежуток (−∞; 4).

Решением системы x m -1 x m -5 x m 4 будет пересечение числовых промежутков (−∞; −1), (−∞; −5) и (−∞; 4). В данном случае этим пересечением является промежуток (−∞; −5).

(−∞; −1) ∩ (−∞; −5) ∩ (−∞; 4) = (−∞; −5)

-5 -1 i 4 на кп

На рисунке представлены числовые промежутки и неравенства, которыми эти числовые промежутки заданы. Видно, что числа, принадлежащие промежутку (−∞; −5), одновременно принадлежат всем исходным промежуткам.

Запишем ответ к системе x m -1 x m -5 x m 4 с помощью числового промежутка:

x ∈ (−∞; −5)


Пример 3. Решить неравенство y b 7 i y m 4 step 1

Решением первого неравенства > 7 является числовой промежуток (7; +∞).

Решением второго неравенства < 4 является числовой промежуток (−∞; 4).

Решением системы y b 7 i y m 4 step 1 будет пересечение числовых промежутков (7; +∞) и (−∞; 4).

В данном случае пересечением числовых промежутков (7; +∞) и (−∞; 4) является пустое множество, поскольку эти числовые промежутки не имеют общих элементов:

(7; +∞) ∩ (−∞; 4) = ∅

Если изобразить числовые промежутки (7; +∞) и (−∞; 4) на координатной прямой, то можно увидеть, что они нигде не пересекаются:

y b 7 i y m 4 координатная прямая


Объединение множеств

Объединением двух (или нескольких) исходных множеств называют множество, которое состоит из элементов, принадлежащих хотя бы одному из исходных множеств.

На практике объединение множеств состоит из всех элементов, принадлежащих исходным множествам. Поэтому и говорят, что элементы такого множества принадлежат хотя бы одному из исходных множеств.

Рассмотрим множество A с элементами 1, 2, 3 и множество B с элементами 4, 5, 6.

A = { 1, 2, 3 }

B = { 4, 5, 6 }

Зададим новое множество C и добавим в него все элементы множества A и все элементы множества B

C = { 1, 2, 3, 4, 5, 6 }

В данном случае объединением множеств A и B является множество C и обозначается следующим образом:

B = C

Символ ∪ означает объединение и заменяет собой союз ИЛИ. Тогда выражение A B = C можно прочитать так:

Элементы, принадлежащие множеству A ИЛИ множеству B, есть элементы, принадлежащие множеству C.

В определении объединения сказано, что элементы такого множества принадлежат хотя бы одному из исходных множеств. Данную фразу можно понимать в прямом смысле.

Вернёмся к созданному нами множеству C, куда входят все элементы множеств A и B. Возьмём для примера из этого множества элемент 5. Что можно про него сказать?

Если 5 является элементом множества C, а множество С является объединением множеств A и B, то можно с уверенностью заявить, что элемент 5 принадлежит хотя бы одному из множеств A и B. Так оно и есть:

A = { 1, 2, 3 }

B = { 4, 5, 6 }

C = { 1, 2, 3, 4, 5, 6 }

Возьмем ещё один элемент из множества С, например, элемент 2. Что можно про него сказать?

Если 2 является элементом множества C, а множество С является объединением множеств A и B, то можно с уверенностью заявить, что элемент 2 принадлежит хотя бы одному из множеств A и B. Так оно и есть:

A = {1, 2, 3}

B = {4, 5, 6}

C = { 1, 2, 3, 4, 5, 6 }

Если мы захотим объединить два или более множества и вдруг обнаружим, что один или несколько элементов принадлежат каждому из этих множеств, то в объединение повторяющиеся элементы будут входить только один раз.

Например, рассмотрим множество A с элементами 1, 2, 3, 4 и множество B с элементами 2, 4, 5, 6.

A = {1, 2, 3, 4}

B = {2, 4, 5, 6}

Видим, что элементы 2 и 4 одновременно принадлежат и множеству A, и множеству B. Если мы захотим объединить множества A и B, то новое множество C будет содержать элементы 2 и 4 только один раз. Выглядеть это будет так:

C = { 1, 2, 3, 4, 5, 6 }

Чтобы при объединении не допустить ошибок, обычно поступают так: сначала в новое множество добавляют все элементы первого множества, затем добавляют элементы второго множества, которые не принадлежат первому множеству. Попробуем сделать такое объединение с множествами A и B.

Итак, у нас имеются следующие исходные множества:

A = { 1, 2, 3, 4 }

B = { 2, 4, 5, 6 }

Зададим новое множество С и добавим в него все элементы множества A

C = { 1, 2, 3, 4,

Теперь добавим элементы из множества B, которые не принадлежат множеству A. Множеству A не принадлежат элементы 5 и 6. Их и добавим во множество C

C = { 1, 2, 3, 4, 5, 6 }


Пример 2. Друзьями Джона являются Том, Фред, Макс и Джордж. А друзьями Майкла являются Лео, Том, Фред и Эван. Найти объединение множеств друзей Джона и Майкла.

Для начала зададим два множества: множество друзей Джона и множество друзей Майкла.

Друзья Джона = { Том,
Фред,
Макс,
Джорж }
Друзья Майкла = { Лео,
Том,
Фред,
Эван }

Зададим новое множество с названием «Все друзья Джона и Майкла» и добавим в него всех друзей Джона и Майкла.

Заметим, что Том и Фред одновременно являются друзьями Джона и Майкла, поэтому мы добавим их в новое множество только один раз, поскольку сразу двух Томов и двух Фредов не бывает.

Все друзья Джона и Майкла = { Том, Фред, Макс, Джордж, Лео, Эван }

В данном случае множество всех друзей Джона и Майкла является объединением множеств друзей Джона и Майкла.

Друзья Джона ∪ Друзья Майкла = Все друзья Джона и Майкла


Пример 3. Даны два числовых промежутка: [−7; 0] и [−3; 5]. Найти их объединение.

Оба промежутка обрамлены квадратными скобками, значит их границы принадлежат им.

Для наглядности перечислим все целые числа, принадлежащие этим промежуткам:

−7, −6, −5, −4, −3,−2, −1, 0  ∈ [−7; 0]

−3,−2, −1, 0, 1, 2, 3, 4, 5 ∈ [−3; 5]

Объединением числовых промежутков [−7; 0] и [−3; 5] будет числовой промежуток [−7; 5], который содержит все числа промежутка [−7; 0] и [−3; 5] без повторов некоторых из чисел

−7, −6, −5, −4, −3,−2, −1, 0, 1, 2, 3, 4, 5 ∈ [−7; 5]

Обратите внимание, что числа −3,−2, −1 принадлежали и первому промежутку и второму. Но поскольку в объединение допускается включать такие элементы только один раз, мы включили их единоразово.

Значит объединением числовых промежутков [−7; 0] и [−3; 5] будет числовой промежуток [−7; 5]

[−7; 0] ∪ [−3; 5] = [−7; 5]

Изобразим на координатной прямой промежутки [−7; 0] и [−3; 5]. На верхней области отметим числовой промежуток [−7; 0], на нижней — промежуток [−3; 5]

два промежутка на одной кп -7 0 b -5 5

Ранее мы выяснили, что промежуток [−7; 5] является объединением промежутков [−7; 0] и [−3; 5]. Здесь полезно вспомнить про определение объединения множеств, которое было приведено в самом начале. Объединение трактуется, как множество, состоящее из всех элементов, принадлежащих хотя бы одному из исходных множеств.

Действительно, если взять любое число из промежутка [−7; 5], то окажется, что оно принадлежит хотя бы одному из промежутков: либо промежутку [−7; 0] либо промежутку [−3; 5].

Возьмём из промежутка [−7; 5] любое число, например число 2. Поскольку промежуток [−7; 5] является объединением промежутков [−7; 0] и [−3; 5], то число 2 будет принадлежать хотя бы одному из этих промежутков. В данном случае число 2 принадлежит промежутку [−3; 5]

два промежутка на одной кп -7 0 b -5 5 шаг 2

Возьмём ещё какое-нибудь число. Например, число −4. Это число будет принадлежать хотя бы одному из промежутков: [−7; 0] или [−3; 5]. В данном случае оно принадлежит промежутку [−7; 0]

два промежутка на одной кп -7 0 b -5 5 шаг 3

Возьмём ещё какое-нибудь число. Например, число −2. Оно принадлежит как промежутку [−7; 0], так и промежутку [−3; 5]. Но на координатной прямой оно указывается только один раз, поскольку в одной точке сразу два числа −2 не бывает.

Не каждое объединение числовых промежутков является числовым промежутком. Например, попробуем найти объединение числовых промежутков [−2; −1] и [4; 7].

Идея остаётся та же самая — объединением числовых промежутков [−2;−1] и [4; 7] будет множество, состоящее из элементов, принадлежащих хотя бы одному из промежутков: [−2; −1] или [4; 7]. Но это множество не будет являться числовым промежутком. Для наглядности перечислим все целые числа, принадлежащие этому объединению:

[−2; −1] ∪ [4; 7] = { −2, −1, 4, 5, 6, 7 }

Получили множество { −2, −1, 4, 5, 6, 7 }. Это множество не является числовым промежутком по причине того, что числа, располагающиеся между −1 и 4, не вошли в полученное множество

-2 -1 и 4 7 на кп

Числовой промежуток должен содержать все числа от левой границы до правой. Если одно из чисел отсутствует, то числовой промежуток теряет смысл. Допустим, имеется линейка длиной 15 см

линейка 15 см

Эта линейка является числовым промежутком [0; 15], поскольку содержит все числа в промежутке от 0 до 15 включительно. Теперь представим, что на линейке после числа 9 сразу следует число 12.

линейка 15 см ошибка

Эта линейка не является линейкой в 15 см, и её нежелательно использовать для измерения. Также, её нельзя назвать числовым промежутком [0; 15], поскольку она не содержит все числа, которые должна была содержать.


Решение неравенств, содержащих знак ≠

Некоторые неравенства содержат знак  (не равно). Например, 2≠ 8. Чтобы решить такое неравенство, нужно найти множество значений переменной x, при которых левая часть не равна правой части.

Решим неравенство 2≠ 8. Разделим обе части данного неравенства на 2, тогда получим:

2x n r 8 шаг 1

Получили равносильное неравенство ≠ 4. Решением этого неравенства является множество всех чисел, не равных 4. То есть если мы подставим в неравенство ≠ 4 любое число, которое не равно 4, то получим верное неравенство.

Подставим, например, число 5

5 ≠ 4 — верное неравенство, поскольку 5 не равно 4

Подставим 7

7 ≠ 4 — верное неравенство, поскольку 7 не равно 4

И поскольку неравенство ≠ 4 равносильно исходному неравенству 2≠ 8, то решения неравенства ≠ 4 будут подходить и к неравенству 2≠ 8. Подставим те же тестовые значения 5 и 7 в неравенство 2≠ 8.

2 × 5 ≠ 8

2 × 7 ≠ 8

Изобразим множество решений неравенства x ≠ 4 на координатной прямой. Для этого выколем точку 4 на координатной прямой, а всю оставшуюся область с обеих сторон выделим штрихами:

чп от -b do 4 i 4 do b

Теперь запишем ответ в виде числового промежутка. Для этого воспользуемся объединением множеств. Любое число, являющееся решением неравенства 2≠ 8 будет принадлежать либо промежутку (−∞; 4) либо промежутку (4; +∞). Так и записываем, что значения переменной x принадлежат (−∞; 4) или (4; +∞). Напомним, что для слова «или» используется символ 

x ∈ (−∞; 4) ∪ (4; +∞)

В этом выражении говорится, что значения, принимаемые переменной x, принадлежат промежутку (−∞; 4) или промежутку (4; +∞).

Неравенства, содержащие знак , также можно решать, как обычные уравнения. Для этого знак  заменяют на знак =. Тогда получится обычное уравнение. В конце решения найденное значение переменной x нужно исключить из множества решений.

Решим предыдущее неравенство 2≠ 8, как обычное уравнение. Заменим знак  на знак равенства =, получим уравнение 2x = 8. Разделим обе части данного уравнения на 2, получим = 4.

Видим, что при x, равном 4, уравнение обращается в верное числовое равенство. При других значениях равенства соблюдаться не будет. Эти другие значения нас и интересуют. А для этого достаточно исключить найденную четвёрку из множества решений.


Пример 2. Решить неравенство 3− 5 ≠ 1 − 2x

Перенесем −2x из правой части в левую часть, изменив знак, а −5 из левой части перенесём в правую часть, опять же изменив знак:

3x - 5 naravno 1 - 2 x шаг 1

Приведем подобные слагаемые в обеих частях:

3x - 5 naravno 1 - 2 x шаг 2

Разделим обе части получившегося неравенства на 5

3x - 5 naravno 1 - 2 x шаг 3

Решением неравенства ≠ 1,2 является множество всех чисел, не равных 1,2.

Изобразим множество решений неравенства ≠ 1,2 на координатной прямой и запишем ответ в виде числового промежутка:

3x - 5 naravno 1 - 2 x шаг 4

x ∈ (−∞; 1,2) ∪ (1,2; +∞)

В этом выражении говорится, что значения, принимаемые переменной x принадлежат промежутку (−∞; 1,2) или промежутку (1,2; +∞)


Решение совокупностей неравенств

Рассмотрим ещё один вид неравенств, который называется совокупностью неравенств. Такой тип неравенств, возможно, вы будете решать редко, но для общего развития полезно изучить и их.

Совокупность неравенств очень похожа на систему неравенств. Различие в том, что в системе неравенств нужно найти множество решений, удовлетворяющих каждому неравенству, образующему эту систему.

А в случае с совокупностью неравенств, нужно найти множество решений, удовлетворяющих хотя бы одному неравенству, образующему эту совокупность.

Совокупность неравенств обозначается квадратной скобкой. Например, следующая запись из двух неравенств является совокупностью:

совокупность x b 3 x m 6

Решим данную совокупность. Сначала нужно решить каждое неравенство по отдельности.

Решением первого неравенства ≥ 3 является числовой промежуток [3; +∞). Решением второго неравенства ≤ 6 является числовой промежуток (−∞; 6].

Множество значений x, при которых верно хотя бы одно из неравенств, будут принадлежать промежутку [3; +∞) или промежутку (−∞; 6]. Так и записываем:

x ∈ [3; +∞) ∪ (−∞; 6]

В этом выражении говорится, что переменная x, входящая в
совокупность совокупность x b 3 x m 6 принимает все значения, принадлежащие промежутку [3; +∞) или промежутку (−∞; 6]. А это то, что нам нужно. Ведь решить совокупность означает найти множество решений, удовлетворяющих хотя бы одному неравенству, образующему эту совокупность. А любое число из промежутка [3; +∞) или промежутка (−∞; 6] будет удовлетворять хотя бы одному неравенству.

Например, число 9 из промежутка [3; +∞) удовлетворяет первому неравенству ≥ 3. А число −7 из промежутка (−∞; 6] удовлетворяет второму неравенству ≤ 6.

Посмотрите внимательно на выражение ∈ [3; +∞) ∪ (−∞; 6], а именно на его правую часть. Ведь выражение [3; +∞) ∪ (−∞; 6] представляет собой объединение числовых промежутков [3; +∞) и (−∞; 6]. Точнее, объединение множеств решений первого и второго неравенства.

Стало быть, решением совокупности неравенств является объединение множеств решений первого и второго неравенства.

Иначе говоря, решением совокупности совокупность x b 3 x m 6 будет объединение числовых промежутков [3; +∞) и (−∞; 6]

числовой промежуток от 3 до 6

Объединением числовых промежутков [3; +∞) и (−∞; 6] является промежуток (−∞; +∞). Точнее, объединением числовых промежутков [3; +∞) и (−∞; 6] является вся координатная прямая. А вся координатная прямая это все числа, которые только могут быть

[3; +∞) ∪ (−∞; 6] = (−∞; +∞)

Ответ можно оставить таким, каким мы его записали ранее:

∈ [3; +∞) ∪ (−∞; 6]

либо заменить на более короткий:

∈ (−∞; +∞)

Возьмём любое число из полученного объединения, и проверим удовлетворяет ли оно хотя бы одному неравенству.

Возьмем для примера число 8. Оно удовлетворяет первому неравенству ≥ 3.

8 ≥ 3

Возьмем еще какое-нибудь число, например, число 1. Оно удовлетворяет второму неравенству ≤ 6

1 ≤ 6

Возьмем еще какое-нибудь число, например, число 5. Оно удовлетворяет и первому неравенству x ≥ 3 и второму ≤ 6

5 b 3 5 m 6


Пример 2. Решить совокупность неравенств совокупность 2x -1 3 - 0

Чтобы решить эту совокупность, нужно найти множество решений, которые удовлетворяют хотя бы одному неравенству, образующему эту совокупность.

Для начала найдём множество решений первого неравенства < −0,25. Этим множеством является числовой промежуток (−∞; −0,25).

Множеством решений второго неравенства x ≥ −7 является числовой промежуток [−7; +∞).

Решением совокупности неравенств совокупность 2x -1 3 - 0 будет объединение множеств решений первого и второго неравенства.

∈ (−∞; −0,25) ∪ [−7; +∞)

Иначе говоря, решением совокупности совокупность 2x -1 3 - 0 будет объединение числовых промежутков (−∞; −0,25) и [−7; +∞)

числовой промежуток от -7 до -025

Объединением числовых промежутков (−∞; −0,25) и [−7; +∞) является является вся координатная прямая. А вся координатная прямая это все числа, которые только могут быть

(−∞; −0,25) ∪ [−7; +∞) = (−∞; +∞)

Ответ можно оставить таким, каким мы его записали ранее:

∈ (−∞; −0,25) ∪ [−7; +∞)

либо заменить на более короткий:

∈ (−∞; +∞)


Пример 3. Решить совокупность неравенств 3x na 2 m 2x - 1

Решим каждое неравенство по отдельности:

3x na 2 m 2x - 1 решение

Множеством решений первого неравенства x < −3 является числовой промежуток (−∞; −3).

Множеством решений второго неравенства ≤ 0 является числовой промежуток (−∞; 0].

Решением совокупности неравенств x m -3 i x m b 0 будет объединение множеств решений первого и второго неравенства.

∈ (−∞; −3) ∪ (−∞; 0]

Иначе говоря, решением совокупности x m -3 i x m b 0 будет объединение числовых промежутков (−∞; −3) и (−∞; 0]

кп -3 0

Объединением числовых промежутков (−∞; −3) и (−∞; 0] является числовой промежуток (−∞; 0]

(−∞; −3) ∪ (−∞; 0] = (−∞; 0]

Ответ можно оставить таким, каким мы его записали ранее:

∈ (−∞; −3) ∪ (−∞; 0]

либо заменить на более короткий:

∈ (−∞; 0]


Задания для самостоятельного решения

Задание 1. Найдите пересечение и объединение следующих множеств:
А = { 1, 2, 5 }
B = { 3, 4, 5 }
Решение:
A ∩ B = { 5 }
A ∪ B = { 1, 2, 3, 4, 5 }
Задание 2. Найдите пересечение и объединение следующих множеств:
А = { −3, −2, −1, 0, 1, 2 }
B = { 1, 2, 3, 4, 5 }
Решение:
A ∩ B = { 1, 2 }
A ∪ B = { −3, −2, −1, 0, 1, 2, 3, 4, 5 }
Задание 3. Найдите пересечение и объединение следующих множеств:
А = { 1, 2, 3 }
B = { 3, 4 }
Решение:
A ∩ B = { 3 }
A ∪ B = { 1, 2, 3, 4 }
Задание 4. Найдите пересечение и объединение следующих числовых промежутков:
[−2; 7) и (0; 10]
Решение:

[−2; 7) ∩ (0; 10] = (0; 7)
[−2; 7) ∪ (0; 10] = [2; 10]
Задание 5. Найдите пересечение и объединение следующих числовых промежутков:
(−∞; 3] и [−2; 1)
Решение:

(−∞; 3] ∩ [−2; 1) = [−2; 1)
(−∞; 3] ∪ [−2; 1) = (−∞; 3]
Задание 6. Найдите пересечение и объединение следующих числовых промежутков:
(3; +∞) и [2; +∞)
Решение:

(3; +∞) ∩ [2; +∞) = (3; +∞)
(3; +∞) ∪ [2; +∞) = [2; +∞)
Задание 7. Найдите пересечение и объединение следующих числовых промежутков:
[−3; −1] и (−2; 4]
Решение:

[−3; −1] ∩ (−2; 4] = (−2; −1]
[−3; −1] ∪ (−2; 4] = [−3; 4]
Задание 8. Решите неравенство:
Решение:


Задание 9. Решите неравенство:
Решение:


Задание 10. Решите совокупность неравенств:
Решение:


Задание 11. Решите совокупность неравенств:
Решение:


Задание 12. Решите совокупность неравенств:
Решение:



Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках