Десятичные дроби

Мы уже говорили, что дроби бывают двух видов: обыкновенные и десятичные. На данный момент, мы немного изучили обыкновенные дроби. Мы узнали, что обыкновенные дроби бывают правильные и неправильные. Также мы узнали, что обыкновенные дроби можно сокращать, складывать, вычитать умножать и делить. И ещё мы узнали, что бывают так называемые смешанные числа, которые состоят из целой и дробной части.

Мы ещё не до конца изучили обыкновенные дроби. Есть немало тонкостей и деталей, о которых следует поговорить, но уже сегодня мы начнём изучать десятичные дроби, поскольку обыкновенные и десятичные дроби достаточно часто приходиться сочетать, то есть при решении задач приходиться применять оба вида дробей.

Этот урок возможно покажется сложным и непонятным. Это вполне нормально. Такого рода уроки требуют, чтобы их именно изучали, а не просматривали поверхностно.

Выражение величин в дробном виде

Иногда удобно бывает показать что-либо в дробном виде. Например, одна десятая часть дециметра записывается так:

1913

Это выражение означает, что один дециметр был поделен на десять частей, и оттуда была взята одна часть:

1914

Как видно на рисунке, одна десятая часть дециметра это один сантиметр.


Рассмотрим следующий пример. Показать 6см и ещё 3мм в сантиметрах в дробном виде.

Итак, требуется выразить 6 см и 3 мм в сантиметрах, но в дробном виде. 6 целых сантиметров у нас уже есть:

1914

но осталось еще 3 миллиметра. Как показать эти 3 миллиметра, при этом в сантиметрах. На помощь приходят дроби. 3 миллиметра это третья часть сантиметра. А третья часть сантиметра записывается как 1916 см

1915

Дробь  1916 означает, что  десять сантиметров были разделены на десять частей, и с них взяли три части (три из десяти). В итоге, имеем шесть целых сантиметров, и три десятых сантиметра:

1917

При этом 6 показывает число целых сантиметров, а дробь 1916 число дробных сантиметров. Эта дробь читается как «шесть целых и три десятых сантиметра».

Дроби, в знаменателе которых присутствуют числа 10, 100, 1000 можно записывать без знаменателя. Сначала пишут целую часть, а потом числитель дробной части. Целая часть отделяется от числителя дробной части запятой.

Например, запишем  1918 без знаменателя. Для этого сначала запишем целую часть. Целая часть это 6. Записываем сначала шестёрку:

6

Целая часть записана. Сразу же после написания целой части ставим запятую:

6,

И теперь записываем числитель дробной части. В смешанном числе 1918 числитель дробной части это 3. Записываем тройку после запятой:

6,3

Любое число, которое представляется в таком виде, называется десятичной дробью.

Поэтому, показать 6см и ещё 3мм в сантиметрах можно с помощью десятичной дроби:

6,3 см

Выглядеть это будет так:

1922

На самом деле, десятичные дроби это те же самые обыкновенные дроби и смешанные числа. Особенность таких дробей в том, что в знаменателе их дробной части стоят числа 10, 100, 1000 или 10000.

Как и смешанное число, десятичная дробь имеет целую часть и дробную. Например, в смешанном числе 1918 целая часть это 6, а дробная часть это 1916.

В десятичной дроби 6,3 целая часть это 6, а дробная часть это числитель дробной части дроби 1916, т.е. 3.

Бывает и так, что обыкновенные дроби в знаменателе которых числа 10, 100, 1000 даны без целой части. Например, дробь 1921 дана без целой части. Чтобы записать такую дробь как десятичную, сначала записывают 0, затем ставят запятую и записывают числитель дробной части. Дробь 1921 без знаменателя будет записана так:

0,5

Читается как «ноль целых, пять десятых».


Перевод смешанных чисел в десятичные дроби

Когда мы записываем смешанные числа без знаменателя, мы тем самым переводим их в десятичные дроби. При переводе обыкновенных дробей в десятичные дроби нужно знать несколько моментов о которых мы сейчас поговорим.

После того, как записана целая часть, обязательно нужно посчитать количество нулей в знаменателе дробной части, потому что количество нулей дробной части и количество цифр после запятой в десятичной дроби должно быть одинаковым. Что это значит? Рассмотрим следующий пример: перевести смешанное число 1931 в десятичную дробь.

Сначала записываем целую часть и ставим запятую:

3,

И можно бы сразу записать числитель дробной части и десятичная дробь готова, но обязательно нужно посчитать количество нулей в знаменателе дробной части.

Итак, считаем количество нулей в дробной части смешанного числа 1931.  В знаменателе дробной части один ноль. Значит в десятичной дроби после запятой будет одна цифра и это цифра будет числитель дробной части 1931 , т.е. двойка:

3,2

Таким образом, смешанное число 1931 при переводе в десятичную дробь обращается в 3,2.

Эта десятичная дробь читается так:

«Три целых, две десятых»

«Десятых» потому что в дробной части смешанного числа 1931 находится число десять.


Пример 2. Перевести смешанное число 1932 в десятичную дробь.

Записываем целую часть и ставим запятую:

5,

И как бы можно сразу записать числитель дробной части и получить десятичную дробь 5,3 но правило говорит, что после запятой должно быть столько цифр сколько нулей в знаменателе дробной части смешанного числа 1932. А мы видим, что в знаменателе дробной части 1932  два нуля. Значит в нашей десятичной дроби после запятой должно быть две цифры, а не одна.

В таких случаях, числитель дробной части нужно немного видоизменить: добавить ноль перед числителем, т.е. перед числом 3

1933

Теперь можно перевести это смешанное число в десятичную дробь. Записываем целую часть и ставим запятую:

5,

И записываем числитель дробной части:

5,03

Видим, что количество цифр после запятой и количество нулей в знаменателе дробной части смешанного числа  1933  одинаково.

Десятичная дробь 5,03 читается так:

«Пять целых, три сотых»

«Сотых» потому что в знаменателе дробной части смешанного числа 1933 находится число сто.


Пример 3. Перевести смешанное число 1941 в десятичную дробь.

Из предыдущих примеров мы узнали, что для успешного перевода смешанного числа в десятичную дробь, количество цифр в числителе дробной части и количество нулей в  знаменателе дробной части должно быть одинаковым.

Перед переводом смешанного числа 1941 в десятичную дробь, его дробную часть нужно немного видоизменить, а именно сделать так, чтобы количество цифр в числителе дробной части и количество нулей в знаменателе дробной части было одинаковым.

В первую очередь смотрим на количество нулей в знаменателе дробной части. Видим, что там три нуля:

1942

Наша задача организовать в числителе дробной части три цифры. Одна цифра у нас уже есть — это число 2. Осталось добавить ещё две цифры. Это будут два нуля. Добавим их перед двойкой. В результате этого, количество нулей в знаменателе и количество цифр в числителе окажется одинаковым:

1943

Теперь можно заняться переводом этого смешанного числа в десятичную дробь. Записываем сначала целую часть и ставим запятую:

3,

и сразу записываем числитель дробной части

3,002

Видим, что количество цифр после запятой и количество нулей в знаменателе дробной части смешанного числа 1944 одинаково.

Десятичная дробь 3,002 читается так:

«Три целых, две тысячных»

«Тысячных» потому что в знаменателе дробной части смешанного числа 1944  находится число тысяча.


Перевод обыкновенных дробей в десятичные дроби

Обыкновенные дроби у которых в знаменателе числа 10, 100, 1000 или  10000 тоже можно перевести в десятичные дроби. Поскольку у обыкновенной дроби целая часть отсутствует, сначала записывают 0, затем ставят запятую и записывают числитель дробной части.

Здесь также количество нулей в знаменателе и количество цифр в числителе должно быть одинаковым. Поэтому, следует быть внимательным.

Пример 1. Перевести обыкновенную дробь 1921 в десятичную дробь.

Целая часть отсутствует, значит сначала записываем 0 и ставим запятую:

0,

Теперь смотрим на количество нулей в знаменателе. Видим, что там один ноль. И в числителе одна цифра. Значит можно спокойно продолжить десятичную дробь, записав после запятой число 5

0,5

В полученной десятичной дроби 0,5 количество цифр после запятой и количество нулей в знаменателе дроби 1921 одинаково. Значит дробь переведена верно.

Десятичная дробь 0,5 читается так:

«Ноль целых, пять десятых»


Пример 2. Перевести обыкновенную дробь 1951 в десятичную дробь.

Целая часть отсутствует. Записываем сначала 0 и ставим запятую:

0,

Теперь смотрим на количество нулей в знаменателе. Видим, что там два нуля. А в числителе только одна цифра. Чтобы сделать количество цифр и количество нулей одинаковым, добавим в числителе перед числом 2 один ноль. Тогда дробь примет вид  1952. Теперь количество нулей в знаменателе и количество цифр в числителе одинаково. Значит мы можем продолжать нашу десятичную дробь:

0,02

В полученной десятичной дроби 0,02 количество цифр после запятой и количество нулей в знаменателе дроби 1952 одинаково. Значит дробь переведена верно.

Десятичная дробь 0,02 читается так:

«Ноль целых, две сотых».


Пример 3. Перевести обыкновенную дробь 1961 в десятичную дробь.

Записываем 0 и ставим запятую:

0,

Теперь считаем количество нулей в знаменателе дроби 1961. Видим, что там пять нулей, а в числителе только одна цифра. Чтобы сделать количество нулей в знаменателе и количество цифр в числителе одинаковым, нужно в числителе перед числом 5 дописать четыре нуля:

1962

Теперь количество нулей в знаменателе и количество цифр в числителе одинаково. Значит можно продолжить десятичную дробь. Записываем после запятой числитель дроби 1962

0,00005

В полученной десятичной дроби 0,00005 количество цифр после запятой и количество нулей в знаменателе дроби  1962 одинаково. Значит дробь переведена верно.

Десятичная дробь 0,00005 читается так:

«Ноль целых, пять стотысячных».


Перевод неправильных дробей в десятичную дробь

Неправильная дробь это дробь у которой числитель больше знаменателя. Встречаются неправильные дроби у которых в знаменателе находятся числа 10, 100, 1000 или 10000. Такие дроби тоже можно переводить в десятичные дроби. Но перед переводом в десятичную дробь, у них необходимо выделять целую часть.

Пример 1. Перевести неправильную дробь  1971  в десятичную дробь.

Дробь 1971 является неправильной дробью. Для того, чтобы перевести такую дробь в десятичную дробь, нужно в первую очередь выделить у нее целую часть. Вспоминаем как выделять целую часть у неправильных дробей. Если забыли, советуем вернуться к этому уроку и изучить этот момент. Там написано об этом коротко и без воды.

Итак, выделим целую часть в неправильной дроби 1971 . Напомним, что дробь означает деление — в данном случае деление числа 112 на число 10

1972

Посмотрим на этот рисунок и соберём новое смешанное число подобно детскому конструктору. 11 будет целой частью, 2 — числителем дробной части, 10 — знаменателем дробной части. В итоге имеем:

1973

Мы получили смешанное число 1974. Его и переведём в десятичную дробь. А как переводить такие числа в десятичные дроби мы уже знаем. Сначала записываем целую часть и ставим запятую:

11,

Теперь считаем количество нулей в знаменателе дробной части. Видим, что там один ноль. И в числителе дробной части одна цифра. Значит количество нулей в знаменателе дробной части  и количество цифр в числителе дробной части одинаково. Это даёт нам возможность сразу записать числитель дробной части после запятой:

11,2

В полученной десятичной дроби 11,2 количество цифр после запятой и количество нулей в знаменателе дроби  1974 одинаково. Значит дробь переведена верно.

Значит изначальная неправильная дробь 1971 при переводе в десятичную дробь обращается в 11,2

Десятичная дробь 11,2 читается так:

«Одиннадцать целых, две десятых».


Пример 2. Перевести неправильную дробь 1981  в десятичную дробь.

Это неправильная дробь, потому что числитель больше знаменателя. Но её можно перевести в десятичную дробь, потому что в знаменателе находится число 100.

В первую очередь выделим целую часть в этой дроби. Для этого, разделим 450 на 100 уголком:

1982

Соберём новое смешанное число — получим 1983 . А как переводить смешанные числа в десятичные дроби мы уже знаем.

Записываем целую часть и ставим запятую:

4,

Теперь считаем количество нулей в знаменателе дробной части и количество цифр в числителе дробной части. Видим, что количество нулей в знаменателе  и количество цифр в числителе одинаково. Это даёт нам возможность сразу записать числитель дробной части после запятой:

4,50

В полученной десятичной дроби 4,50 количество цифр после запятой и количество нулей в знаменателе дроби  1983  одинаково. Значит дробь переведена верно.

Значит изначальная неправильная дробь 1981 при переводе в десятичную дробь обращается в 4,50

При решении задач, если в конце десятичной дроби оказываются нули, их отбрасывают. Давайте и мы отбросим ноль в нашем ответе. Тогда мы получим 4,5

Это одна из интересных особенностей десятичных дробей. Она заключается в том, что нули которые стоят в конце дроби, не придают этой дроби никакого веса. Другими словами, десятичные дроби 4,50 и 4,5 несут одно и тоже значение. Между ними можно поставить знак равенства:

4,50 = 4,5

Возникает вопрос: а почему так происходит? Вроде, на вид 4,50 и 4,5 разные дроби. Весь секрет кроется в основном свойстве дроби, котором мы изучали ранее. Мы попробуем доказать, почему 4,50 и 4,5 несут одно и то же значение, но после изучения следующей темы, которая называется «перевод десятичной дроби в смешанное число».


Перевод десятичной дроби в смешанное число

Любая десятичная дробь может быть обратно переведена в смешанное число. Для этого, достаточно уметь читать десятичные дроби. Например, переведём 6,3 в смешанное число. 6,3 это шесть целых и три десятых. Записываем сначала шесть целых:

6

и рядом три десятых:

1918


Пример 2. Перевести десятичную дробь 3,002 в смешанное число

3,002 это три целых и две тысячных. Записываем сначала три целых

3

и рядом записываем две тысячных:

3 1991


Пример 3. Перевести десятичную дробь 4,50 в смешанное число

4,50 это четыре целых и пятьдесят сотых. Записываем четыре целых

4

и рядом пятьдесят сотых:

1983

Кстати, давайте вспомним последний пример в предыдущей теме. Мы сказали, что десятичные дроби 4,50 и 4,5 несут одно и тоже значение. Также мы сказали, что ноль можно отбросить. Попробуем доказать, что десятичные 4,50 и 4,5 равны. Для этого, переведем обе десятичные дроби в смешанные числа.

После перевода в смешанное число десятичная дробь 4,50 обращается в 1983, а десятичная дробь 4,5 обращается в 19101

Имеем два смешанных числа 1983  и  19101. Переведём эти смешанные числа в неправильные дроби:

19102

19103

Теперь имеем две дроби  19104  и  19105. Настало время вспомнить основное свойство дроби, которое говорит, что при умножении (или делении) числителя и знаменателя на одно и то же число, значение дроби не изменяется.

Давайте разделим первую дробь 19104 на 10

19106

Получили 19105, а это вторая дробь. Значит 19104 и 19105 равны между собой и несут одно и то же значение:

19104  = 19105

Попробуйте на калькуляторе разделить сначала 450 на 100, а затем 45 на 10. Забавная штука получится.


Перевод десятичной дроби в обыкновенную дробь

Любая десятичная дробь может быть обратно переведена в обыкновенную дробь. Для этого, опять же достаточно уметь читать десятичные дроби. Например, переведём 0,3 в обыкновенную дробь. 0,3 это ноль целых и три десятых. Записываем сначала ноль целых:

0

и рядом три десятых 0 1916 . Ноль по традиции не пишут, поэтому окончательный ответ будет не 01916, а просто 1916.


Пример 2. Перевести десятичную дробь 0,02 в обыкновенную дробь.

0,02 это ноль целых и две сотых. Ноль по традиции не пишем, поэтому сразу записываем две сотых

1951


Пример 3. Перевести 0,00005 в обыкновенную дробь

0,00005 это ноль целых и пять сто тысячных. Ноль не пишем, поэтому сразу записываем пять сто тысячных  1961


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Опубликовано

Десятичные дроби: 2 комментария

  1. все круто, понятно и доступно.
    спасибо. долгий путь до высшей математики предстоит)

  2. Спасибо за сайт! Всё очень понятно. Не понимал что такое дробь уже с пятого класса (щя 2 курс колледжа), прочитав на сайте всё понял, спасибо вам!!!

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *