Элементы статистики

Продолжаем изучать элементарные задачи по математике. Сегодня мы поговорим о статистике.

Статистика — это раздел математики, который изучает вопросы сбора, измерения и анализа информации, представленной в числовой форме. Происходит слово статистика от латинского слова status (состояние или положение дел).

Так, с помощью статистики мы можем узнать свое «положение дел», касающихся финансов. С начала месяца можно вести дневник расходов и по окончании месяца, воспользовавшись статистикой, узнать сколько денег в среднем мы тратили каждый день или какая потраченная сумма была наибольшей в этом месяце либо узнать какую сумму мы тратили наиболее часто.

На основе этой информации можно провести анализ и сделать определенные выводы: следует ли в следующем месяце маленько сбавить аппетит, чтобы тратить меньше денег либо наоборот позволить себе не только хлеб с водой, но и колбасу.

Выборка. Объем. Размах

Что такое выборка? Если говорить простым языком, то это отобранная нами информация для исследования. Например, мы можем сформировать следующую выборку — суммы денег, потраченных в каждый из шести дней. Давайте нарисуем таблицу в которую занесем расходы за шесть дней

расходы за шесть дней статистика рисунок 1

Выборка состоит из n-элементов. Вместо переменной n может стоять любое число. У нас имеется шесть элементов, поэтому переменная n равна 6

n = 6

Элементы выборки обозначаются с помощью переменных с индексами икс 1 икс 2 икс n. Последний икс n элемент является шестым элементов выборки, поэтому вместо n будет стоять число 6.

расходы за шесть дней статистика рисунок 2

Обозначим элементы нашей выборки через переменные икс 1 икс 2 икс n

Количество элементов выборки называют объемом выборки. В нашем случае объем равен шести.

Размахом выборки называют разницу между самым большим и маленьким элементом выборки.

В нашем случае, самым большим элементов выборки является элемент 250, а самым маленьким — элемент 150. Разница между ними равна 100

x max и xmin 250 и 150

размах равен 100 R 100


Среднее арифметическое

Понятие среднего значения часто употребляется в повседневной жизни.

Примеры:

  • средняя зарплата жителей страны
  • средний балл учащихся
  • средняя скорость движения
  • средняя производительность труда.

Речь идет о среднем арифметическом — результате деления суммы элементов выборки на их количество.

Среднее арифметическое — это результат деления суммы элементов выборки на их количество.

формула нахождения среднего значения

Вернемся к нашему примеру

расходы за шесть дней статистика рисунок 2

Узнаем сколько в среднем мы тратили в каждом из шести дней:

расходы за шесть дней статистика рисунок 3


Средняя скорость движения

При изучении задач на движение мы определяли скорость движения следующим образом: делили пройденное расстояние на время. Но тогда подразумевалось, что тело движется с постоянной скоростью, которая не менялась на протяжении всего пути.

В реальности, это происходит довольно редко или не происходит совсем. Тело как правило движется с различной скоростью.

Вспомните, когда мы ездим на автомобиле или велосипеде, наша скорость часто меняется — когда впереди нас помехи, нам приходится сбавлять скорость. Когда же трасса свободна, мы ускоряемся. При этом за время нашего ускорения скорость изменяется несколько раз.

Речь идет о средней скорости движения. Чтобы её определить нужно сложить скорости движения, которые были в каждом часе/минуте/секунде и результат разделить на время движения.

Задача 1. Автомобиль первые 3 часа двигался со скоростью 66,2 км/ч, а следующие 2 часа — со скоростью 78,4 км/ч. С какой средней скоростью он ехал?

средняя скорость движения рисунок 1

Сложим скорости, которые были у автомобиля в каждом часе и разделим на время движения (5ч)

нахождение средней скорости движения задача 1

Значит автомобиль ехал со средней скоростью 71,08 км/ч.

Определять среднюю скорость можно и по другому — сначала найти расстояния, пройденные с одной скоростью, затем сложить эти расстояния и результат разделить на время. На рисунке видно, что первые три часа скорость у автомобиля на меняется. Тогда можно найти расстояние, пройденное за три часа:

66,2 × 3 = 198,6 км.

Аналогично можно определить расстояние, которое было пройдено со скоростью 78,4 км/ч. В задаче сказано, что с такой скоростью автомобиль двигался 2 часа:

78,4 × 2 = 156,8 км.

Сложим эти расстояния и результат разделим на 5

нахождение средней скорости движения задача 1 второй способ


Задача 2. Велосипедист за первый час проехал 12,6 км, а в следующие 2 часа он ехал со скоростью 13,5 км/ч. Определить среднюю скорость велосипедиста.

нахождение средней скорости движения задача 2

Скорость велосипедиста в первый час составляла 12,6 км/ч. Во второй и третий час он ехал со скоростью 13,5. Определим среднюю скорость движения велосипедиста:

нахождение средней скорости движения задача 2 рисунок 2


Мода и медиана

Модой называют элемент, который встречается в выборке чаще других.

Рассмотрим следующую выборку: шестеро спортсменов, а также время в секундах за которое они пробегают 100 метров

таблица для определения моды рисунок 1

Элемент 14 встречается в выборке чаще других, поэтому элемент 14 назовем модой.

Рассмотрим еще одну выборку. Тех же спортсменов, а также смартфоны, которые им принадлежат

выборка люди и смартфоны

Элемент iphone встречается в выборке чаще других, значит элемент iphone является модой. Говоря простым языком, носить iphone модно.

Конечно элементы выборки в этот раз выражены не числами, а другими объектами (смартфонами), но для общего представления о моде этот пример вполне приемлем.


Рассмотрим следующую выборку: семеро спортсменов, а также их рост в сантиметрах:

таблица для определения медианы рисунок 1

Упорядочим данные в таблице так, чтобы рост спортсменов шел по возрастанию. Другими словами, построим спортсменов по росту:

таблица для определения медианы рисунок 2

Выпишем рост спортсменов отдельно:

180, 182, 183, 184, 185, 188, 190

В получившейся выборке 7 элементов. Посередине этой выборки располагается элемент 184. Слева от него три элемента и справа от него три элемента. Такой элемент как 184 называют медианой упорядоченной выборки.

Медианой упорядоченной выборки называют элемент, располагающийся посередине.

Отметим, что данное определение справедливо в случае, если количество элементов упорядоченной выборки является нечетным.

В рассмотренном выше примере, количество элементов упорядоченной выборки было нечетным. Это позволило нам быстро указать медиану

рост семерых спортсменов рисунок 1

Но возможны случаи, когда количество элементов выборки четно.

К примеру, рассмотрим выборку в которой не семеро спортсменов, а шестеро:

таблица для определения медианы рисунок 3

Построим этих шестерых спортсменов по росту:

таблица для определения медианы рисунок 4

Выпишем рост спортсменов отдельно:

180, 182, 184, 186, 188, 190

В данной выборке не получается указать элемент, который находился бы посередине. Если указать элемент 184 как медиану, то слева от этого элемента будет располагаться два элемента, а справа — три. Если как медиану указать элемент 186, то слева от этого элемента будет располагаться три элемента, а справа — два.

В таких случаях для определения медианы выборки, нужно взять два элемента выборки, находящихся посередине и найти их среднее арифметическое. Полученный результат будет являться медианой.

Вернемся к нашим спортсменам. В упорядоченной выборке 180, 182, 184, 186, 188, 190 посередине располагаются элементы 184 и 186

рост шестерых спортсменов рисунок 2

Найдем среднее арифметическое элементов 184 и 186

средняя арифметическое чисел 184 и 186

Элемент 185 является медианой выборки, несмотря на то, что этот элемент не является членом исходной и упорядоченной выборки. Спортсмена с ростом 185 нет среди остальных спортсменов. Рост в 185 см используется в данном случае для статистики, чтобы можно было сказать о том, что срединный рост спортсменов составляет 185 см.

Поэтому, более точное определение медианы зависит от количества элементов в выборке.

Если количество элементов упорядоченной выборки нечетно, то медианой выборки называют элемент, располагающийся посередине.

Если количество элементов упорядоченной выборки четно, то медианой выборки называют среднее арифметическое двух чисел, располагающихся посередине этой выборки.

Медиана и среднее арифметическое по сути являются «близкими родственниками», поскольку и то и другое используют для определения среднего значения. Например, для предыдущей упорядоченной выборки 180, 182, 184, 186, 188, 190 мы определили медиану, равную 185. Этот же результат можно получить путем определения среднего арифметического элементов 180, 182, 184, 186, 188, 190

среднее ариф для 180 182 184 186 188 190

Но медиана в некоторых случаях отражает более реальную ситуацию. Например, рассмотрим следующий пример:

Было подсчитано количество имеющихся очков у каждого спортсмена. В результате получилась следующая выборка:

0, 1, 1, 1, 2, 1, 2, 3, 5, 4, 5, 0, 1, 6, 1

Определим среднее арифметическое для данной выборки — получим значение 2,2

среднее ариф для 011121235450161

По данному значению можно сказать, что в среднем у спортсменов 2,2 очка

Теперь определим медиану для этой же выборки. Упорядочим элементы выборки и укажем элемент, находящийся посередине:

0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6

В данном примере, медиана лучше отражает реальную ситуацию, поскольку половина спортсменов имеет не более одного очка. Это позволяет нам сказать, что большинство спортсменов имеет одно очко.

Еще пример. Врач зарабатывает 8 тыс. рублей в месяц, учитель 9 тыс. рублей, а олигарх зарабатывает 100 тыс. рублей. Подсчитывать в таком случае среднее арифметическое и говорить, что в среднем эти трое работников зарабатывают 39 тыс. рублей, никак язык не поворачивается. Да и несправедливо это будет:

8 9 100 на три среднее ариф

Здесь разумнее воспользоваться медианой и сказать, что большинство работников получают не более девяти тысяч рублей.


Частота

Частота это число, которое показывает сколько раз в выборке встречается тот или иной элемент.

Предположим, что в школе проходят соревнования по подтягиваниям. В соревнованиях участвует 36 школьников. Составим таблицу в которую будем заносить число подтягиваний, а также число участников, которые выполнили столько подтягиваний.

таблица для определения частоты рисунок 1

По таблице можно узнать сколько человек выполнило 5, 10 или 15 подтягиваний. Так, 5 подтягиваний выполнили четыре человека, 10 подтягиваний выполнили восемь человек, 15 подтягиваний выполнили три человека.

Количество человек, повторяющих одно и то же число подтягиваний в данном случае являются частотой. Поэтому вторую строку таблицы переименуем в название «частота»:

таблица для определения частоты рисунок 2

Такие таблицы называют таблицами частот.

Частота обладает следующим свойством: сумма частот равна общему числу данных в выборке.

Это означает, что сумма частот равна общему числу школьников, участвующих в соревнованиях, то есть тридцати шести. Проверим так ли это. Сложим частоты, приведенные в таблице:

4 + 5 + 10 + 8 + 6 + 3 = 36


Относительная частота

Относительная частота это в принципе та же самая частота, которая была рассмотрена выше, но только выраженная в процентах.

Относительная частота равна отношению частоты на общее число элементов выборки.

Вернемся к нашей таблице:

таблица для определения частоты рисунок 2

Пять подтягиваний выполнили 4 человека из 36. Шесть подтягиваний выполнили 5 человек из 36. Восемь подтягиваний выполнили 10 человек из 36 и так далее. Давайте заполним таблицу с помощью таких отношений:

таблица для определения частоты рисунок 3

Выполним деление в этих дробях:

таблица для определения частоты рисунок 4

Выразим эти частоты в процентах. Для этого умножим их на 100. Умножение на 100 удобно выполнить передвижением запятой на две цифры вправо:

таблица для определения частоты рисунок 5

Теперь можно сказать, что пять подтягиваний выполнили 11% участников, 6 подтягиваний выполнили 14% участников, 8 подтягиваний выполнили 28% участников и так далее.


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Опубликовано

Элементы статистики: 12 комментариев

  1. Круто, с нетерпением ждала новых уроков, очень понравилось изложение, я много болела в школе и пропустила азы, математику сдала на 4-, а теперь хочу понять и выучить что бы потом научить сына, когда подрастет, и нашла этот чудесный сайт, который позволил мне наконец то полюбить математику, а не ненавидеть ее, спасибо Вам! Продолжайте в том же духе, теперь с удовольствием решаю задачки и дроби, которые меня пугали, надеюсь ещё выучить геометрию и высшую математику. Надеюсь вы школьной программой не ограничитесь?

    1. Здравствуйте. Спасибо и Вам.
      Надеемся, что не ограничимся школьной программой. Вопрос времени которого не хватает.

      1. Привет Admin!
        Вы (ваша команда) супер!
        Спасибо за эту лучшую программу которая должна быть в учебниках!!

  2. Доброго времени суток, этот ресурс лучшее, что я видел по математике. Очень прошу изложите дискретную математику и все что для неё нужно(базу), буду крайне признателен.
    С ув. Олег.

  3. мб мне кажется
    но по школьной программе эти 48 шагов программа математики с 1 по 3 класс

    1. На сайте смешанная программа, не привязанная к классам. В одном уроке могут затрагиваться темы как из младших так и из старших классов. Мы посчитали, что если изучать математику в такой последовательности, то можно выйти на более менее сносный уровень владения математикой, чтобы можно было увереннее себя чувствовать в школе или другом учебном заведении

  4. Дорогие админы, пожалуйста добавьте задачи после каждой уроки, т.к можно будет практиковать.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *