Раскрытие скобок

Продолжаем изучать основы алгебры и в данном уроке мы научимся раскрывать скобки. Раскрыть скобки означает освободить выражение от этих скобок.

Иногда, чтобы выполнить какое-либо задание, от скобок необходимо избавиться, но делать это нужно очень аккуратно, чтобы не поломать выражение. От неправильного раскрытия скобок может измениться значение выражения, что является ошибкой. Поэтому, нужно учиться раскрывать скобки правильно.

Раскрытие скобок это всего два правила, которые нужно выучить наизусть. При регулярных занятиях, раскрывать скобки можно с закрытыми глазами, и те правила которые требовалось заучивать наизусть, можно благополучно забыть.

Раскрытие скобок также позволяет привести выражение в порядок. Без скобок, выражение выглядит проще и красивее.

Первое правило раскрытия скобок

Рассмотрим следующее простейшее выражение:

8 + (−9 + 3)

Значение данного выражения равно 2. Давайте раскроем скобки в данном выражении. Раскрыть скобки означает избавиться от них, не влияя на значение выражения. То есть, после того, как мы избавимся от скобок значение выражения 8+(−9+3) по прежнему должно быть равно 2.

Первое правило раскрытия скобок выглядит следующим образом:

При раскрытии скобок, если перед скобками стоит плюс, то этот плюс опускается вместе со скобками.

Итак, мы видим что в выражении 8+(−9+3) перед скобками стоит плюс. Значит этот плюс нужно опустить вместе со скобками. Иными словами, скобки исчезнут вместе с плюсом, который перед ними стоял. А то, что было в скобках запишется без изменений:

восемь плюс в скобках минус девять плюс три опускаем скобки

Мы получили выражение без скобок 8−9+3. Данное выражение равно 2, как и предыдущее выражение со скобками было равно 2.

8 + (−9 + 3) = 2

8 − 9 + 3 = 2

Таким образом, между выражениями 8+(−9+3) и 8−9+3 можно поставить знак равенства потому что они несут одно и то же значение:

8 + (−9 + 3) = 8 − 9 + 3

2 = 2


Пример 2. Раскрыть скобки в выражении 3 + (−1 − 4)

Перед скобками стоит плюс, значит этот плюс опускается вместе со скобками. То, что было в скобках останется без изменений:

3 + (−1 − 4) = 3 − 1 − 4


Пример 3. Раскрыть скобки в выражении 2 + (−1)

Перед скобками стоит плюс, значит этот плюс опускается вместе со скобками. То, что было в скобках останется без изменений:

2 + (−1) = 2 − 1

Внимательные наверное заметили, что в данном примере раскрытие скобок стало своего рода обратной операцией замене вычитания сложением. Как это понимать?

В выражении 2−1 происходит вычитание, но его можно заменить сложением — получается 2+(−1). Но если в выражении 2+(−1) раскрыть скобки, то получится изначальное 2−1.

Поэтому первое правило раскрытия скобок можно использовать для упрощения выражений после каких-нибудь преобразований. То есть, избавить его от скобок и сделать проще.

Например, упростим выражение 2a+a−5b+b.

Чтобы упростить данное выражение, можно привести подобные слагаемые. Напомним, что для того, чтобы привести подобные слагаемые, нужно сложить коэффициенты этих подобных слагаемых и результат умножить на общую буквенную часть:

упрощение 2a a -5b +b

Получили выражение 3a+(−4b). В этом выражении раскроем скобки. Перед скобками стоит плюс, поэтому используем первое правило раскрытия скобок — опускаем скобки вместе с плюсом, который стоит перед этими скобками:

3a + (−4b) = 3a − 4b

Таким образом, выражение 2a+a−5b+b упрощается до 3a−4b.

Раскрыв одни скобки, по пути могут встретиться другие. К ним применяем те же правила, что и к первым. Например, раскроем скобки в следующем выражении:

2 + (−3 + 1) + 3 + (−6)

Здесь два участка, где нужно раскрыть скобки. В данном случае применимо первое правило раскрытия скобок, а именно опускание скобок вместе с плюсом, который стоит перед этими скобками:

2 + (−3 + 1) + 3 + (−6) = 2 − 3 + 1 + 3 − 6


Пример 3. Раскрыть скобки в выражении 6+(−3)+(−2)

В обоих местах, где имеются скобки перед ними стоит плюс, значит этот плюс опускается вместе со скобками. То, что было в скобках останется без изменений:

6 + (−3) + (−2) = 6 − 3 − 2


Иногда первое слагаемое в скобках записано без знака. Например, в выражении 1+(2+3−4) первое слагаемое в скобках 2 записано без знака. Возникает вопрос, а какой знак будет стоять перед двойкой после того, как скобки и плюс, стоящий перед скобками опустятся? Ответ напрашивается сам — перед двойкой будет стоять плюс.

На самом деле даже будучи в скобках перед двойкой стоит плюс, но мы его не видим по причине того, что его не записывают. Мы уже говорили, что полная запись положительных чисел выглядит как +1, +2, +3. Но плюсы по традиции не записывают, поэтому мы и видим привычные для нас положительные числа 1, 2, 3.

Поэтому, чтобы раскрыть скобки в выражении 1+(2+3−4), нужно как обычно опустить скобки вместе с плюсом, стоящим перед этими скобками, но первое слагаемое которое было в скобках записать со знаком плюс:

1 + (2 + 3 − 4) = 1 + 2 + 3 − 4


Пример 4. Раскрыть скобки в выражении −5 + (2 − 3)

Перед скобками стоит плюс, поэтому применяем первое правило раскрытия скобок, а именно опускаем скобки вместе с плюсом, который стоит перед этими скобками. Но первое слагаемое, которое в скобках записываем со знаком плюс:

−5 + (2 − 3) = −5 + 2 − 3


Пример 5. Раскрыть скобки в выражении (−5)

Перед скобки стоит плюс, но он не записан по причине того, что до него не было других чисел или выражений. Наша задача убрать скобки, применив первое правило раскрытия скобок, а именно опустить скобки вместе с этим плюсом (даже если он невидим)

(−5) = −5


Пример 6. Раскрыть скобки в выражении 2a + (−6a + b)

Перед скобками, стоит плюс, значит этот плюс опускается вместе со скобками. То, что было в скобках останется без изменений:

2a + (−6a + b) = 2a −6a + b


Пример 7. Раскрыть скобки в выражении 5a + (−7b + 6c) + 3a + (−2d)

В данном выражении имеется два участка, где нужно раскрыть скобки. В обоих участках перед скобками стоит плюс, значит этот плюс опускается вместе со скобками. То, что было в скобках останется без изменений:

5a + (−7b + 6c) + 3a + (−2d) = 5a −7b + 6c + 3a − 2d


Второе правило раскрытия скобок

Теперь рассмотрим второе правило раскрытия скобок. Оно применяется тогда, когда перед скобками стоит минус.

Если перед скобками стоит минус, то этот минус опускается вместе со скобками, но слагаемые которые были в скобках меняют свой знак на противоположный.

Например, раскроем скобки в следующем выражении

5 − (−2 − 3)

Видим, что перед скобками стоит минус. Значит нужно применить второе правило раскрытия, а именно опустить скобки вместе с минусом, стоящим перед этими скобками, а в слагаемых которые были в скобках поменять знаки на противоположные

пять минус в скобках минус два минус три опускаем скобки

Мы получили выражение без скобок 5+2+3. Данное выражение равно 10, как и предыдущее выражение со скобками было равно 10.

5 − (−2 − 3) = 10

5 + 2 + 3 = 10

Таким образом, между выражениями 5−(−2−3) и 5+2+3 можно поставить знак равенства. потому что они несут одно и то же значение:

5 − (−2 − 3) = 5 + 2 + 3

10 = 10


Пример 2. Раскрыть скобки в выражении 6 − (−2 − 5)

Перед скобками стоит минус, поэтому применяем второе правило раскрытия скобок, а именно опускаем скобки вместе с минусом, который стоит перед этими скобками, а слагаемые которые были в скобках записываем с противоположными знаками:

6 − (−2 − 5) = 6 + 2 + 5


Пример 3. Раскрыть скобки в выражении 2 − (7 + 3)

Перед скобками стоит минус, поэтому применяем второе правило раскрытия скобок, а именно опускаем скобки вместе с минусом, который стоит перед этими скобками, а слагаемые которые были в скобках записываем с противоположными знаками:

2 − (7 + 3) = 2 − 7 − 3


Пример 4. Раскрыть скобки в выражении −(−3 + 4)

Перед скобками стоит минус, поэтому применяем второе правило раскрытия скобок, а именно опускаем скобки вместе с минусом, который стоит перед этими скобками, а слагаемые которые были в скобках записываем с противоположными знаками:

−(−3 + 4) = 3 − 4


Пример 5. Раскрыть скобки в выражении −(−8 − 2) + 16 + (−9 − 2)

Здесь два участка, где нужно раскрыть скобки. Причем в первом случае нужно применить второе правило раскрытия скобок, а когда очередь доходит до участка +(−9−2) нужно применить первое правило раскрытия:

−(−8 − 2) + 16 + (−9 − 2) = 8 + 2 + 16 − 9 − 2


Пример 6. Раскрыть скобки в выражении −(−a − 1)

Перед скобками стоит минус, поэтому применяем второе правило раскрытия скобок, а именно опускаем скобки вместе с минусом, который стоит перед этими скобками, а слагаемые которые были в скобках записываем с противоположными знаками:

−(−a − 1) = a + 1


Пример 7. Раскрыть скобки в выражении −(4a + 3)

Перед скобками стоит минус, поэтому применяем второе правило раскрытия скобок, а именно опускаем скобки вместе с минусом, который стоит перед этими скобками, а слагаемые которые были в скобках записываем с противоположными знаками:

−(4a + 3) = −4a − 3


Пример 8. Раскрыть скобки в выражении a − (4b + 3) + 15

Перед скобками стоит минус, поэтому применяем второе правило раскрытия скобок, а именно опускаем скобки вместе с минусом, который стоит перед этими скобками, а слагаемые которые были в скобках записываем с противоположными знаками:

a − (4b + 3) + 15 a − 4b − 3 + 15


Пример 9. Раскрыть скобки в выражении 2a + (3b − b) − (3c + 5)

Здесь два участка, где нужно раскрыть скобки. Причем в первом случае нужно применить первое правило раскрытия скобок, а когда очередь доходит до участка −(3c+5) нужно применить второе правило раскрытия:

2a + (3b − b) − (3c + 5) = 2a + 3b − b − 3c − 5


Пример 10. Раскрыть скобки в выражении −a − (−4a) + (−6b) − (−8c + 15)

Здесь три участка, где нужно раскрыть скобки. Вначале применить второе правило раскрытия скобок, затем первое, а затем снова второе:

−a − (−4a) + (−6b) − (−8c + 15) −a + 4a − 6b + 8c − 15


Механизм раскрытия скобок

Правила раскрытия скобок, которые мы рассмотрели выше, основаны на распределительном законе умножения:

a(b+c) = ab + ac

На самом деле раскрытием скобок называют ту процедуру, когда общий множитель умножают на каждое слагаемое в скобках. В результате такого умножения скобки исчезают. Например, раскроем скобки в выражении 3×(4+5)

3 × (4 + 5) = 3 × 4 + 3 × 5

Поэтому если нужно умножить число на выражение в скобках (или выражение в скобках умножить на число) надо говорить раскроем скобки.

Но как связан распределительный закон умножения с правилами раскрытия скобок, которые мы рассматривали выше?

Дело в том, что перед любыми скобками стоит общий множитель. В примере 3×(4+5) общий множитель это 3. А в примере a(b+c) общий множитель это переменная a.

Если перед скобками нет чисел или переменных, то общим множителем является 1 или −1, в зависимости от того какой знак стоит перед скобками. Если перед скобками стоит плюс, значит общим множителем является 1. Если перед скобками стоит минус, значит общим множителем является −1.

Множители 1 и −1 как правило не записывают, но это не значит что их не существует в выражении.

К примеру раскроем скобки в выражении −(3b−1). Перед скобками стоит минус, поэтому нужно воспользоваться вторым правилом раскрытия скобок, то есть опустить скобки вместе с минусом, стоящим перед скобками, и записать выражение, которое было в скобках с противоположными знаками:

−(3b − 1) = −3b + 1

Мы раскрыли скобки воспользовавшись правилом раскрытия скобок. Но эти же скобки можно раскрыть, воспользовавшись распределительным законом умножения. Для этого записываем перед скобкой общий множитель единицу, которая не была записана

−1(3b −1)

Минус, который стоял перед скобками относится к единице. Теперь можно раскрыть скобки, применяя распределительный закон умножения. Для этого общий множитель −1 нужно умножить на каждое слагаемое в скобках и полученные результаты сложить.

Для удобства заменим разность, находящуюся в скобках на сумму. Для этого заменим вычитание сложением:

−1(3b −1) = −1(3b + (−1))

Далее умножаем общий множитель −1 на каждое слагаемое в скобках:

−1(3b −1) = −1(3b + (−1)) = −1 × 3b + (−1) × (−1) = −3b + 1

Как и в прошлый раз мы получили выражение −3b+1. Каждый согласится с тем, что в этот раз затрачено больше времени на решение столь простейшего примера. Поэтому разумнее пользоваться готовыми правилами раскрытия скобок, которые мы рассматривали в данном уроке:

−(3b − 1) = −3b + 1

Но понимать, как эти правила работают изнутри не помешает.


В данном уроке мы научились ещё одному тождественному преобразованию. Вместе с раскрытием скобок, вынесением общего за скобки и приведением подобных слагаемых можно немного расширить круг решаемых задач. Например:

Раскрыть скобки и привести подобные слагаемые в следующем выражении:

минус 4 на 2b плюс 1 минус 2b плюс 3

Здесь нужно выполнить два действия — сначала раскрыть скобки, а потом привести подобные слагаемые. Итак, по порядку:

1) Раскрываем скобки:

минус 4 на 2b плюс 1 минус 2b плюс 3 шаг 1

2) Приводим подобные слагаемые:

минус 4 на 2b плюс 1 минус 2b плюс 3 шаг 2

В получившемся выражении −10b+(−1) можно раскрыть скобки:

минус 4 на 2b плюс 1 минус 2b плюс 3 шаг 3


Пример 2. Раскрыть скобки и привести подобные слагаемые в следующем выражении:

5 на едница минус 2a минус 3 на a минус 1

1) Раскроем скобки:

5 на едница минус 2a минус 3 на a минус 1 шаг 1

2) Приведем подобные слагаемые. В этот раз для экономии времени и места не будем записывать, как коэффициенты умножаются на общую буквенную часть.

5 на едница минус 2a минус 3 на a минус 1 шаг 2


Пример 3. Упростить выражение 8m+3m и найти его значение при m=−4

1) Сначала упростим выражение. Чтобы упростить выражение 8m+3m, можно вынести в нём общий множитель m за скобки:

8m+3m = m(8+3)

2) Находим значение выражения m(8+3) при m=−4. Для этого в выражение m(8+3) вместо m подставляем число −4

m (8 + 3) = −4 (8 + 3) = −4 × 8 + (−4) × 3 = −32 + (−12) = −44


Задания для самостоятельного решения

Задание 1. Раскройте скобки в следующем выражении:
Задание 2. Раскройте скобки в следующем выражении:
Задание 3. Раскройте скобки в следующем выражении:
Задание 4. Раскройте скобки в следующем выражении:
Задание 5. Раскройте скобки в следующем выражении:
Задание 6. Раскройте скобки в следующем выражении:
Задание 7. Раскройте скобки в следующем выражении:
Задание 8. Раскройте скобки в следующем выражении:
Задание 9. Раскройте скобки в следующем выражении:
Задание 10. Раскройте скобки в следующем выражении:
Задание 11. Раскройте скобки в следующем выражении:
Задание 12. Раскройте скобки в следующем выражении:
Задание 13. Раскройте скобки в следующем выражении:
Задание 14. Раскройте скобки в следующем выражении:
Задание 15. Раскройте скобки в следующем выражении:
Задание 16. Раскройте скобки в следующем выражении:
Задание 17. Раскройте скобки в следующем выражении:
Задание 18. Раскройте скобки в следующем выражении:
Задание 19. Раскройте скобки в следующем выражении:
Задание 20. Раскройте скобки в следующем выражении:
Задание 21. Раскройте скобки в следующем выражении:
Задание 22. Раскройте скобки и приведите подобные слагаемые в следующем выражении:
Задание 23. Раскройте скобки и приведите подобные слагаемые в следующем выражении:

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Раскрытие скобок: 12 комментариев

  1. Спасибо огромное за шикарные уроки!
    Очень жаль, что уроки выходят так редко. Придется качать учебники и читать, хоть я и занимаюсь просто ради интереса, для себя, но каждое утро неистовое желание и интерес узнать что же там дальше.
    Я все равно буду следить за выходом новых шагов и читать свежие уроки, так как вы умеете красиво и понятно подать материал.
    Еще раз спасибо за отлично проведенное время и успехов Вам.

  2. Когда следующий урок? Говорили, что работа заморожена над сайтом, но так же сказали, что уроки будут выходить раз в месяц, а последний урок вышел судя по посту ВК в апреле, а уже сентябрь!?=(

    1. Да, работа над сайтом временно прекращена из-за отсутствия времени. Поначалу удавалось выпускать уроки раз в месяц, но сегодня как видите совсем плачевная ситуация. Но думаю, что в скором времени всё нормализуется. Подождем

  3. Администраторы, веб программисты этого сайта, обращаю ваше внимание, что слева в контекстном меню и на главной странице сайта, после 42 шага, отсутствуют ссылки на следующие уроки, например про Простейшие Задачи и так далее. Доработайте кликабельные ссылки пожалуйста.

  4. Сохраняю страницы к себе в архив ПДФ каждой темы, мало ли какие времена настанут с интернетом… Огромное спасибо вам за вашу работу, вы действительно делаете качественно и сердито! Прямо как после лекции «Плач математика»=) Подскажите пожалуйста, если вам известно, имеется ли на просторах интернета подобные сайты вашему, по тематике химии, физики, биологии, возможно вы встречали такое?

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *